180 research outputs found

    Chronic non-specific abdominal complaints in general practice: a prospective study on management, patient health status and course of complaints

    Get PDF
    BACKGROUND: While in general practice chronic non-specific abdominal complaints are common, there is insufficient data on the clinical course and the management of these complaints. Aim of this study was to present a primary care based profile of these chronic complaints including health care involvement, health status and clinical course. METHODS: Thirty general practitioners (GPs) and patients from their practices participated in a prospective follow-up study. All patients and GPs were asked to complete questionnaires at baseline and at 6, 12 and 18 months of follow-up. The GPs provided information on diagnostic and therapeutic management and on referral concerning 619 patients with chronic non-specific abdominal complaints, while 291 patients provided information about health status and clinical course of the complaints. RESULTS: When asked after 18 months of follow-up, 51,7% of the patients reported an equal or worsened severity of complaints. General health perception was impaired and patients had high scores on SCL-anxiety and SCL-depression scales. Diagnostic tests other than physical examination and laboratory tests were not frequently used. Medication was the most frequent type of treatment. The persistence of chronic non-specific abdominal complaints was quite stable. CONCLUSION: Once non-specific chronic abdominal complaints have become labelled as chronic by the attending physician, little improvement can be expected. The impact on patients' physiological and psychological well-being is large. GPs use a variety of diagnostic and therapeutic strategies. Research into the evidence base of currently applied management strategies is recommended

    Identification of a possible role of thymine DNA glycosylase (TDG) in epigenome maintenance

    Get PDF
    Thymine DNA glycosylase (TDG) was discovered as an enzyme capable of removing uracil (U) and thymine (T) from G/U and G/T mispairs, respectively. Owing to this ability, TDG was proposed to initiate restoration of C/G pairs at sites of cytosine or 5-methycytosine (5-meC) deamination. In addition to products of base deamination, the substrate spectrum of TDG covers a wide range of DNA base damages resulting from base oxidation and alkylation. TDG was also found to engage in physical and functional interactions with transcription factors, and more recent evidence supports additional interactions with the de novo DNA methyltransferases Dnmt3a and 3b in the context of gene transcription. Together with its biochemical properties, these observations suggest that TDG might be targeted to gene regulatory sequences as part of a macromolecular assembly to control their functional integrity. TDG may counteract the mutagenic effects of C and 5-meC deamination in CG-rich regions and/or be involved in the maintenance of CpG promoter methylation patterns. A tight regulation of CpG methylation at gene regulatory regions is critical for accurate gene expression, proper cellular differentiation and embryonic development. A somewhat surprising but in this context consistent finding was that, in contrast to other DNA glycosylases, TDG is essential for proper fetal development since a targeted knockout of the gene leads to embryonic lethality. To gain insights into the biological functions of TDG, we aimed to establish and apply biochemical fractionation procedures for high affinity purification and structural and functional characterization of TDG containing proteins complexes. The first part of the thesis was concerned with biochemical characterization of the protein interaction network of TDG in living mammalian cells. To this end, I applied different approaches allowing high affinity isolation of protein complexes from mammalian cells, such as the tandem affinity purification (TAP) method as well as immunoprecipitation of endogenous protein and of the TDGa isoform from TdgA overexpressing embryonic stem (ES) cells. These efforts, however, did not reveal any TDG interacting partners in subsequent mass spectrometry (MS) analyses. These results were surprising, as TDG was previously reported to interact with transcription factors and DNA methyltransferases. Remarkably, however, all previously identified protein interactors of TDG were discovered in screen with the respective partner proteins, and under conditions of simultaneous overexpression of both interacting proteins. The only proteins ever identified in screen with TDG were Sumo1 and Sumo3, which turned out to covalently modify the glycosylase. For this reason, we decided to pursue our search with classical cell fractionation experiments. We first did gel filtration experiments from total cell lysates and showed that TDG is indeed able to form distinct multiprotein complexes in undifferentiated mouse embryonic stem cells that may also contain the RNA helicase p68. Further subcellular fractionation experiments then revealed that TDG is present in all cell compartments, with a significant fraction of nuclear TDG being associated with chromatin, together with p68 and de novo DNA methyltransferases. Together with published findings, these results suggested that protein complexes containing TDG might act in a chromatin-associated context, at gene regulatory regions. The developmental phenotype of Tdg-/- knockout mice and the interactions of TDG with factors involved in developmental gene regulation (e.g. retinoic acid receptors RAR/RXR) implicate a function of TDG during early development and cell differentiation, at times governed by dynamic changes in gene expression, DNA methylation and histone modifications. Such changes have been studied using a well-established during in vitro differentiation of ES cells to lineage committed neuronal progenitors (NPs). We thus aimed to address the function of TDG as part of chromatin associated protein complexes during the process of retinoic acid induced differentiation of ES cells to NPs. In the second part of the thesis we made use of a this well-established in vitro differentiation system to examine the genome-wide localization of TDG to chromatin by TDG chromatin immunoprecipitation (ChIP) and to correlate TDG association to chromatin with gene expression and DNA methylation changes linked to cellular differentiation. TDG ChIP combined with high throughput sequencing showed that TDG associates with high preference to CpG islands in promoters of actively transcribed genes or genes poised for transcriptional activation. Such CpG rich sequences are normally unmethylated in mammalian genomes. Interestingly, we found TDG to localize to promoters of many genes controlling pluripotency (e.g. Oct4, Nanog) and developmental processes (e.g. Sfrp2, Tgfb2, Gata6), thus, supporting a function of TDG in cell differentiation and/or embryonic development. As different lines of circumstantial evidence have associated TDG with changes in CpG methylation following activation of hormone responsive gene promoters, we went on to further test genome-wide promoter methylation in Tdg+/- and Tdg-/- NPs making use of a combination of methylated DNA immunoprecipitation (MeDIP) and microarray technology. This showed that the loss of TDG does not affect global promoter DNA methylation. Nevertheless, there were a number of significant differences, suggesting that TDG might affect the CpG methylation pattern at some promoters. Also, owing to the limited resolution of the MeDIP method, however, we could not exclude an involvement of TDG in the control of DNA methylation of specific promoter CpGs. Additional bisulfite sequencing of promoters of TDG bound developmental genes (e.g. Sfrp2, Tgfb2) in NPs and differentiated mouse embryonic fibroblasts (MEFs) have indeed proved that loss of TDG affects local changes in DNA methylation at particular CpGs. Subsequent analysis of genome-wide gene expression profiles of ES cells and differentiated Tdg+/- and Tdg-/- NPs revealed that a limited number of genes (229) are differentially regulated in ES, whereas substantial differences in gene expression in were observed in NPs (1022 genes). This implicated a specific function of TDG in the regulation of cell differentiation triggered gene expression changes. Detailed analysis of the expression of the Pax6 gene, accurate regulation of which is essential for proper neuron development, showed that its promoter is bound by TDG and that its transcription is inappropriately regulated upon further differentiation of Tdg-/- NPs into the neuronal lineage. Whereas Tdg+/- NPs efficiently downregulated Pax6 (50x) and further differentiated into neuron-like cells, Tdg-/- NPs only partially downregulated Pax6 gene expression (6x) and underwent apoptosis at day 2 after plating in neuronal medium. This phenotype was complemented by expression of TDGa, clearly implicating TDG in the regulation of Pax6 expression during differentiation of ES cells to terminal neurons. We further observed misregulation of pluripotency genes (e.g. Oct4) regulated by TDG bound promoters during early differentiation of ES cells. In the absence of TDG, ES cells showed the tendency to enter spontaneous and/or RA induced differentiation, suggesting a role for TDG in the regulation of pluripotency. During RA induced differentiation we further observed the activation of the neuron specific gene Lrrtm2 exclusively in TDG proficient cells. In addition, ChIP experiments showed that transcription factors involved in the activation of the Lrrtm2 gene (e.g. COUP-TFI, RAR) are not recruited to the respective promoter in Tdg-/- cells, suggesting that TDG might act passively as a scaffold factor important for the recruitment of transcription factors to promoter regions. I set out to clarify the biological function of TDG by investigating its molecular interactions in mammalian cells. I found that TDG, as a DNA repair enzyme, associates tightly with chromatin, where it localizes with high preference to CpG island promoters of active genes and genes poised to be expressed. I also found that the loss of TDG causes misregulation of genes during cell differentiation and that this appears to be related to a function of TDG in establishing and/or maintaining CpG methylation pattern in gene regulatory sequences. These discoveries implicate a novel function of DNA repair, in the maintenance not only of the genome, but also the epigenome

    Impairment of Rat Fetal Beta-Cell Development by Maternal Exposure to Dexamethasone during Different Time-Windows

    Get PDF
    Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas

    Klebsiella pneumoniae Multiresistance Plasmid pMET1: Similarity with the Yersinia pestis Plasmid pCRY and Integrative Conjugative Elements

    Get PDF
    Dissemination of antimicrobial resistance genes has become an important public health and biodefense threat. Plasmids are important contributors to the rapid acquisition of antibiotic resistance by pathogenic bacteria.The nucleotide sequence of the Klebsiella pneumoniae multiresistance plasmid pMET1 comprises 41,723 bp and includes Tn1331.2, a transposon that carries the bla(TEM-1) gene and a perfect duplication of a 3-kbp region including the aac(6')-Ib, aadA1, and bla(OXA-9) genes. The replication region of pMET1 has been identified. Replication is independent of DNA polymerase I, and the replication region is highly related to that of the cryptic Yersinia pestis 91001 plasmid pCRY. The potential partition region has the general organization known as the parFG locus. The self-transmissible pMET1 plasmid includes a type IV secretion system consisting of proteins that make up the mating pair formation complex (Mpf) and the DNA transfer (Dtr) system. The Mpf is highly related to those in the plasmid pCRY, the mobilizable high-pathogenicity island from E. coli ECOR31 (HPI(ECOR31)), which has been proposed to be an integrative conjugative element (ICE) progenitor of high-pathogenicity islands in other Enterobacteriaceae including Yersinia species, and ICE(Kp1), an ICE found in a K. pneumoniae strain causing primary liver abscess. The Dtr MobB and MobC proteins are highly related to those of pCRY, but the endonuclease is related to that of plasmid pK245 and has no significant homology with the protein of similar function in pCRY. The region upstream of mobB includes the putative oriT and shares 90% identity with the same region in the HPI(ECOR31).The comparative analyses of pMET1 with pCRY, HPI(ECOR31), and ICE(Kp1 )show a very active rate of genetic exchanges between Enterobacteriaceae including Yersinia species, which represents a high public health and biodefense threat due to transfer of multiple resistance genes to pathogenic Yersinia strains

    Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches

    Get PDF
    Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB) and Posterior Weighted Averaging (PWA) methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC) algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics

    Exploring Takfir, Its Origins and Contemporary Use: The Case of Takfiri Approach in Daesh’s Media

    Get PDF
    Muslims have been the primary targets of Daesh’s attacks since 2014 in different countries such as Afghanistan, Iraq, and Syria. These attacks were based on its takfiri ideology. As Daesh official media and documents indicate, kufr (unbelief, infidelity) in Daesh’s approach is not limited to non-Muslims (original disbelievers), but Muslims are the most significant parts of kuffar (unbelievers) in its view and defined as incidental disbelievers. Through studying Daesh’s official documents and various Arabic, English, and Persian media productions, in an explanatory research, this article attempts to display Daesh’s takfiri approach toward Muslims and explains its historical and ideological roots, difference with Al-Qaeda’s takfiri approach, different approaches to takfir inside Daesh, main targets of Daesh’s takfir, and the reasons behinds its takfiri view. This article displays that for Daesh, the Muslims are limited only to Sunni Muslims who are accepting and following its approach. Other Sunni and non-Sunni Muslims are thus kuffar. This study also shows that the assertion of takfir has become a method for Daesh to discredit its opponents, such as Shi’a Muslims and other Muslim groups

    Principles of genetic circuit design

    Get PDF
    Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552
    corecore