36 research outputs found

    Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx

    Get PDF
    Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. We report that Archaeopteryx long bones are composed of nearly avascular parallel-fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all endothermic vertebrates. The unexpected histology of Archaeopteryx and other basalmost birds is actually consistent with retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms occurred later in the group's history

    Time budgets of grassland herbivores: body size similarities

    Full text link
    The summer (May–September) time budgets of 14 generalist herbivore species living in the same grassland environment are presented in terms of various component activities (e.g., walking, feeding, resting, etc.). All the species exhibit a decrease in activity as average daily air temperature increases. Greater body size and variety of habitats used by a species lead to increased time spent active. Use of a greater variety of habitats may increase activity time because different habitats provide suitable thermal conditions for activity at different times of the day. Body size affects sn herbivore's thermal balance through metabolism, body surface area and thermal inertia. The time spent feeding, exclusive of time spent searching for foods, is less for large than small herbivores. This may arise because large species must spend more time walking in the search for food to satisfy their energy requirements. The observed feeding time differences for species composing a common trophic level in a single environment may help to explain their diet choice because feeding time constrains the variety of foods an herbivore can select. Diet differences, in turn, can explain the potential competition for food if food is in short supply.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47766/1/442_2004_Article_BF00377110.pd

    Low physical activity levels of modern Homo sapiens among free-ranging mammals.

    No full text
    Obesity prevalence rates are increasing worldwide and one prevailing hypothesis is that physical activity levels of modern humans are markedly reduced compared to those of our Paleolithic ancestors. We examine this hypothesis by deriving relative activity energy expenditure from available doubly labeled water and indirect calorimetry data in free-ranging non-human mammals. Our results, given the constraints posed by limited data availability, suggest that a low physical activity level, much less than that observed in free-ranging non-human mammals or highly active humans, is present in modern adult humans living within advanced settings. Our observations lend support to the hypothesis that low activity-related energy expenditure levels contribute to the rising worldwide prevalence of obesity
    corecore