3 research outputs found

    Coherence, subgroup separability, and metacyclic structures for a class of cyclically presented groups

    Get PDF
    We study a class M of cyclically presented groups that includes both finite and infinite groups and is defined by a certain combinatorial condition on the defining relations. This class includes many finite metacyclic generalized Fibonacci groups that have been previously identified in the literature. By analysing their shift extensions we show that the groups in the class M are are coherent, sub-group separable, satisfy the Tits alternative, possess finite index subgroups of geometric dimension at most two, and that their finite subgroups are all meta-cyclic. Many of the groups in M are virtually free, some are free products of metacyclic groups and free groups, and some have geometric dimension two. We classify the finite groups that occur in M, giving extensive details about the metacyclic structures that occur, and we use this to prove an earlier conjecture concerning cyclically presented groups in which the relators are positive words of length three. We show that any finite group in the class M that has fixed point free shift automorphism must be cyclic

    Efficient Finite Groups Arising in the Study of Relative Asphericity

    Get PDF
    We study a class of two-generator two-relator groups, denoted Jn(m, k), that arise in the study of relative asphericity as groups satisfying a transitional curvature condition. Particular instances of these groups occur in the literature as finite groups of intriguing orders. Here we find infinite families of non-elementary virtually free groups and of finite metabelian non-nilpotent groups, for which we determine the orders. All Mersenne primes arise as factors of the orders of the non-metacyclic groups in the class, as do all primes from other conjecturally infinite families of primes. We classify the finite groups up to isomorphism and show that our class overlaps and extends a class of groups Fa,b,c with trivalent Cayley graphs that was introduced by C.M.Campbell, H.S.M.Coxeter, and E.F.Robertson. The theory of cyclically presented groups informs our methods and we extend part of this theory (namely, on connections with polynomial resultants) to ?bicyclically presented groups? that arise naturally in our analysis. As a corollary to our main results we obtain new infinite families of finite metacyclic generalized Fibonacci groups
    corecore