8 research outputs found

    Time-Dependent Partition-Free Approach in Resonant Tunneling Systems

    Full text link
    An extended Keldysh formalism, well suited to properly take into account the initial correlations, is used in order to deal with the time-dependent current response of a resonant tunneling system. We use a \textit{partition-free} approach by Cini in which the whole system is in equilibrium before an external bias is switched on. No fictitious partitions are used. Besides the steady-state responses one can also calculate physical dynamical responses. In the noninteracting case we clarify under what circumstances a steady-state current develops and compare our result with the one obtained in the partitioned scheme. We prove a Theorem of asymptotic Equivalence between the two schemes for arbitrary time-dependent disturbances. We also show that the steady-state current is independent of the history of the external perturbation (Memory Loss Theorem). In the so called wide-band limit an analytic result for the time-dependent current is obtained. In the interacting case we propose an exact non-equilibrium Green function approach based on Time Dependent Density Functional Theory. The equations are no more difficult than an ordinary Mean Field treatment. We show how the scattering-state scheme by Lang follows from our formulation. An exact formula for the steady-state current of an arbitrary interacting resonant tunneling system is obtained. As an example the time-dependent current response is calculated in the Random Phase Approximation.Comment: final version, 18 pages, 9 figure

    Surface-potential solutions to the Pao-Sah voltage equation

    No full text
    10.1016/j.sse.2006.04.042Solid-State Electronics507-81320-1329SSEL

    A physical picture of superconductivity

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    A physical picture of superconductivity

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Exact electronic transport in an alternating A/B quantum dot array

    No full text
    The electronic transport in the quantum dot array for an arbitrary number of dots in which the quantum dot A is alternated with the quantum dot B is studied with the exact Green's function calculation. The algebraic structures of the DC current, the differential conductance, and the density of states for the alternating A/B quantum dot array are obtained analytically. The results show that the two-step-like DC current, the two-main-peak-like differential conductance, and the multi-peak-like density of states will be sensitively modified by the number of dots and the difference for the one-electron level and the resonant width of the quantum dot A with ones of the quantum dot B

    Backbone-induced semiconducting behavior in short DNA wires

    No full text
    We propose a model Hamiltonian for describing charge transport through short homogeneous double stranded DNA molecules. We show that the hybridization of the overlapping π\pi, orbitals in the base-pair stack coupled to the backbone is sufficient to predict the existence of a gap in the nonequilibrium current-voltage characteristics with a minimal number of parameters. Our results are in a good agreement with the recent finding of semiconducting behavior in short poly(G)-poly(C) DNA oligomers. In particular, our model provides a correct description of the molecular resonances which determine the quasi-linear part of the current out of the gap region
    corecore