17 research outputs found
Normal Cones and Thompson Metric
The aim of this paper is to study the basic properties of the Thompson metric
in the general case of a real linear space ordered by a cone . We
show that has monotonicity properties which make it compatible with the
linear structure. We also prove several convexity properties of and some
results concerning the topology of , including a brief study of the
-convergence of monotone sequences. It is shown most of the results are
true without any assumption of an Archimedean-type property for . One
considers various completeness properties and one studies the relations between
them. Since is defined in the context of a generic ordered linear space,
with no need of an underlying topological structure, one expects to express its
completeness in terms of properties of the ordering, with respect to the linear
structure. This is done in this paper and, to the best of our knowledge, this
has not been done yet. The Thompson metric and order-unit (semi)norms
are strongly related and share important properties, as both are
defined in terms of the ordered linear structure. Although and
are only topological (and not metrical) equivalent on , we
prove that the completeness is a common feature. One proves the completeness of
the Thompson metric on a sequentially complete normal cone in a locally convex
space. At the end of the paper, it is shown that, in the case of a Banach
space, the normality of the cone is also necessary for the completeness of the
Thompson metric.Comment: 36 page
Continuity of generalized convex and generalized concave set-valued functions
The connection between continuity, lower semicontinuity, upper semicontinuity, local boundedness and uniform boundedness is investigated for two new types of set-valued functions which generalize the convex and concave set-valued functions, respectively. The obtained results are similar to well-known theorems concerning the continuity of convex and concave real-valued functions, but their derivation is based on concepts and techniques taken from set-valued analysisAvailable from TIB Hannover: RO 1945(210) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
From scalar to vector optimization
summary:Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem , , are given. These conditions work with arbitrary functions , but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It is shown that the answer is affirmative if is of class (i.e., differentiable with locally Lipschitz derivative). Further, considering functions, the discussion is raised to unconstrained vector optimization problems. Using the so called “oriented distance” from a point to a set, we generalize to an arbitrary ordering cone some second-order necessary conditions and sufficient conditions given by Liu, Neittaanmäki, Křížek for a polyhedral cone. Furthermore, we show that the conditions obtained are sufficient not only for efficiency but also for strict efficiency