11 research outputs found

    Resident Cellular Components of the Human Lung Current Knowledge and Goals for Research on Cell Phenotyping and Function

    Get PDF
    The purpose of the workshop was to identify still obscure or novel cellular components of the lung, to determine cell function in lung development and in health that impacts on disease, and to decide promising avenues for future research to extract and phenotype these cells. Since robust technologies are now available to identify, sort, purify, culture, and phenotype cells, progress is now within sight to unravel the origins and functional capabilities of lung cells in developmental stages and in disease. The Workshop's agenda was to first discuss the lung's embryologic development, including progenitor and stem cells, and then assess the functional and structural cells in three main compartments of the lung: (1) airway cells in bronchial and bronchiolar epithelium and bronchial glands (basal, secretory, ciliated, Clara, and neuroendocrine cells); (2) alveolar unit cells (Type 1 cells, Type 2 cells, and fibroblasts in the interstitium); and (3) pulmonary vascular cells (endothelial cells from different vascular structures, smooth muscle cells, and adventitial fibroblasts). The main recommendations were to: (1) characterize with better cell markers, both surface and nonsurface, the various cells within the lung, including progenitor cells and stem cells; (2) obtain more knowledge about gene expression in specific cell types in health and disease, which will provide insights into biological and pathologic processes; (3) develop more methodologies for cell culture, isolation, sorting, co-culture, and immortalization; and (4) promote tissue banks to facilitate the procurement of tissue from normal and from diseased lung for analysis at all levels

    A Conspicuous Clay Ovoid in Nakhla: Evidence for Subsurface Hydrothermal Alteration on Mars with Implications for Astrobiology

    No full text
    A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, and contains acicular apatite crystals, olivine, sulfides, Ti-rich magnetite, and a new mineral of the rhoenite group. To infer the origin of the ovoid, a large set of analytical tools was employed, including scanning electron microscopy and backscattered electron imaging, wavelength-dispersive X-ray analysis, X-ray mapping, Raman spectroscopy, time-of-flight secondary ion mass spectrometry analysis, high-resolution transmission electron microscope imaging, and atomic force microscope topographic mapping. The concentric wall of the ovoid surrounds an originally hollow volume and exhibits internal layering of contrasting nanotextures but uniform chemical composition, and likely inherited its overall shape from a preexisting vesicle in the mesostasis glass. A final fibrous layer of Fe-rich phases blankets the interior surfaces of the ovoid wall structure. There is evidence that the parent rock of Nakhla has undergone a shock event from a nearby bolide impact that melted the rims of pyroxene and the interstitial matter and initiated an igneous hydrothermal system of rapidly cooling fluids, which were progressively mixed with fluids from the melted permafrost. Sharp temperature gradients were responsible for the crystallization of Al-rich clinopyroxene rims, rhoenite, acicular apatites, and the quenching of the mesostasis glass and the vesicle. During the formation of the ovoid structure, episodic fluid infiltration events resulted in the precipitation of saponite rinds around the vesicle walls, altered pyrrhotite to marcasite, and then isolated the ovoid wall structure from the rest of the system by depositing a layer of iron oxides/hydroxides. Carbonates, halite, and sulfates were deposited last within interstitial spaces and along fractures. Among three plausible competing hypotheses here, this particular abiotic scenario is considered to be the most reasonable explanation for the formation of the ovoid structure in Nakhla, and although compelling evidence for a biotic origin is lacking, it is evident that the martian subsurface contains niche environments where life could develop. © Mary Ann Liebert, Inc

    Persons and Their Bodies: Rights, Responsibilities, and the Sale of Organs

    No full text
    corecore