11 research outputs found

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Genetic mapping of the murine gene and 14 related sequences encoding chromosomal protein HMG-14.

    No full text
    The high-mobility-group chromosomal protein HMG-14 preferentially binds to nucleosomal core particles of mammalian chromatin and may modulate the chromatin configuration of transcriptionally active genes. The human gene for HMG-14 has been localized to the Down syndrome region of Chromosome (Chr) 21 and may be involved in the etiology of this syndrome. Here we show, by means of genetic linkage analysis of interspecific and intersubspecific backcross mice, that the murine functional gene, Hmg14, is located on the distal end of mouse Chr 16, a region known to have conserved synteny with human Chr 21. In addition to the functional gene for HMG-14, both human and mouse genomes contain many related sequences that are probably processed pseudogenes. Here we map the locations of 14 Hmg14-related sequences in two mouse genomes. The 14 mapped loci are widely dispersed on ten chromosomes (Chrs 3, 5, 7, 9, 11, 12, 16, 17, 19, and X) and can be detected efficiently with a single cDNA probe. Thus, the Hmg14 multigene family is well suited to serve as genetic markers for other linkage studies in mice

    Identification and genetic mapping of the murine gene and 20 related sequences encoding chromosomal protein HMG-17

    No full text
    HMG-17 is an abundant, nonhistone chromosomal protein that binds preferentially to nucleosomal core particles of mammalian chromatin. The human gene for HMG-17 has been localized to Chromosome (Chr) 1p, but the murine gene has not been previously mapped. Here we identify the murine functional gene, Hmg17, from among more than 25 related sequences (probably processed pseudogenes) and show that it is located on mouse Chr 4, in a region known to have conserved linkage relationships with human Chr 1p. We also report the map locations of 20 additional Hmg17-related sequences on mouse Chrs 1, 2, 3, 5, 7, 8, 9, 13, 15, 16, 17, 18, and X. The multiple, dispersed members of the Hmg17 multigene family can be detected efficiently with a single cDNA probe and provide useful markers for genetic mapping studies in mice

    Retinopathy of Prematurity

    No full text

    Hard X-Ray/Soft Gamma-Ray Experiments and Missions: Overview and Prospects

    No full text

    Social Issues in Management: Theory and Research in Corporate Social Performance

    No full text

    Organic electrochemistry

    No full text

    Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment

    No full text
    corecore