772 research outputs found

    Introduction to gyrokinetic theory with applications in magnetic confinement research in plasma physics

    Full text link
    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources

    A REVIEW OF REFRIGERANT MALDISTRIBUTION

    Get PDF

    Electron energy transport and magnetic curvature driven modes

    Get PDF
    A transport coefficient for anomalous electron thermal conduction is constructed on the basis of the so-called Principle of Profile Consistency. It is assumed that the relevant modes in plasma where a substantial fraction of the electron population is magnetically trapped produce magnetic reconnection at a microscopic level and are driven by the combined effects of the plasma pressure gradient and the magnetic field curvature. Consequently, the scaling for the electron energy confinement time exhibits a strongly favorable dependence on the radius of magnetic curvature
    corecore