36 research outputs found

    A directed mutation operator for real coded genetic algorithms

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2010.Developing directed mutation methods has been an interesting research topic to improve the performance of genetic algorithms (GAs) for function optimization. This paper introduces a directed mutation (DM) operator for GAs to explore promising areas in the search space. In this DM method, the statistics information regarding the fitness and distribution of individuals over intervals of each dimension is calculated according to the current population and is used to guide the mutation of an individual toward the neighboring interval that has the best statistics result in each dimension. Experiments are carried out to compare the proposed DM technique with an existing directed variation on a set of benchmark test problems. The experimental results show that the proposed DM operator achieves a better performance than the directed variation on most test problems

    A Distributed Scalable Approach to Formation Control in Multi-Robot Systems

    Get PDF
    A new algorithm for the control of formations of mobile robots is presented. Formations with a triangular lattice structure are created using distributed control rules, using only local information on each robot. The overall direction of movement of the formation is not pre-established but rather results from local interactions, giving all the robots a common, self-organized heading. Experiments were done to test the algorithm, yielding results in which robots behaved as expected, moving at a reasonable speed and maintaining the desired distances among themselves. Up to seven robots were used in real experiments and up to forty in simulation

    A visual demonstration of convergence properties of cooperative coevolution

    Get PDF
    We introduce a model for cooperative coevolutionary algorithms (CCEAs) using partial mixing, which allows us to compute the expected long-run convergence of such algorithms when individuals ’ fitness is based on the maximum payoff of some N evaluations with partners chosen at random from the other population. Using this model, we devise novel visualization mechanisms to attempt to qualitatively explain a difficult-to-conceptualize pathology in CCEAs: the tendency for them to converge to suboptimal Nash equilibria. We further demonstrate visually how increasing the size of N, or biasing the fitness to include an ideal-collaboration factor, both improve the likelihood of optimal convergence, and under which initial population configurations they are not much help

    High Order Multistep Methods with Improved Phase-Lag Characteristics for the Integration of the Schr\"odinger Equation

    Full text link
    In this work we introduce a new family of twelve-step linear multistep methods for the integration of the Schr\"odinger equation. The new methods are constructed by adopting a new methodology which improves the phase lag characteristics by vanishing both the phase lag function and its first derivatives at a specific frequency. This results in decreasing the sensitivity of the integration method on the estimated frequency of the problem. The efficiency of the new family of methods is proved via error analysis and numerical applications.Comment: 36 pages, 6 figure

    A Dynamic Island-Based Genetic Algorithms Framework

    Get PDF
    This work presents a dynamic island model framework for helping the resolution of combinatorial optimization problems with evolutionary algorithms. In this framework, the possible migrations among islands are represented by a complete graph. The migrations probabilities associated to each edge are dynamically updated with respect to the last migrations impact. This new framework is tested on the well-known 0/1 Knapsack problem and MAX-SAT problem. Good results are obtained and several properties of this framework are studied

    Merging Groups for the Exploration of Complex State Spaces in the CPSO Approach

    No full text

    The Development of a Self-assessment System for the Learners Answers with the Use of GPNN

    No full text

    Hexagonal Lattice Formation in Multi-Robot Systems

    No full text

    A Physics Inspired Finite State Machine Controller for Mobile Acoustic Arrays

    No full text
    corecore