174 research outputs found
TEM observations of wear mechanisms of TiAlCrN and TiAlN/CrN coatings grown by combined steered-arc/unbalanced magnetron deposition
The dry sliding wear of monolayer TiAlCrN and TiAlCrYN and multilayer TiAlN/CrN coatings has been investigated against a BM2 tool steel counterface using a ring on block configuration at 91 N, 0.42 m/s. The coatings were deposited on a BM2 tool steel substrate by combined steered-arc/unbalanced-magnetron deposition. The wear rate of the multilayer was superior to the monolayer, although both provide a substantial improvement compared with the wear behaviour of the base BM2 tool steel (e.g., wear rate = 6.1 × 10-4 mm3/m for the BM2 tool steel; 3.98 × 10-5 mm3/m for the TiAlCrN monolayer and 2.58 × 10-5 mm3/m for the TiAlN/CrN multilayer). Wear of the coatings occurred by several mechanisms, fine scale (< 200 nm) detachment in the early stages and micron scale detachment associated with cracking in the coating in the later stages. Detailed transmission electron microscopy of cross-sections of the worn surface indicated that two dominant types of cracking were present within the coating: (1) cracking perpendicular to the coating surface, often along columnar grain boundaries, typically running through the entire coating; (2) cracking approximately parallel to the worn surface, extending across several columnar grains. For the multilayers, there was no evidence that the spalling was induced by decohesion along the interface of the multilayers. Limited surface deformation was detected at the worn surface of the TiAlCrYN and TiAlCrN, but not at the worn surface of the TiAlN/CrN, tested under identical conditions. In contrast, the uncoated BM2 tool steel worn surface exhibited extensive plastic deformation. The relationship between wear mechanism and coating structure is discussed. © 1999 Published by Elsevier Science S.A. All rights reserved
Lubricated sliding wear behaviour of aluminium alloy composites
Interest in aluminium alloy (Al-alloy) composites as wear resistant materials continues to grow. However, the use of the popular Al-alloy-SiC composite can be limited by the abrasive nature of the SiC, leading to increased counterface wear rates. This study reports new Al-alloy composites that offer high wear resistance, to a level similar to Al-alloy-SiC. Aluminium alloy (2124, 5056) matrix composites reinforced by nominally 15 vol.% of Cr3Si, MoSi2, Ni3Al and SiC particles were prepared by a powder metallurgy route. The aluminium alloy matrix was produced by gas atomisation, and the Cr3Si, MoSi2 and Ni3Al were prepared by self-propagating high temperature synthesis (SHS), while the SiC was from a standard commercial supply. Following blending, the particulates were consolidated by extrusion, producing a homogenous distribution of the reinforcement in the matrix. Wear testing was undertaken using a pin-on-ring configuration against an M2 steel counterface, with a commercial synthetic oil lubricant, at 0.94 m/s and a normal load of 630 N, corresponding to initial Hertzian contact pressures of 750–890 MPa (the exact value depending on the material properties). Specific wear rates at sliding distances exceeding 400 km were in the range 4.5–12.7 × 10?10 mm3/Nm. The monolithic alloys gave the highest specific wear rates, while the MoSi2 and Cr3Si reinforced alloys exhibited the lowest. The worn surface has been analysed in detail using focused ion beam (FIB) microscopy to determine the sub-surface structural evolution and by tomographic reconstruction of tilted scanning electron microscopy (SEM) images, to determine the local worn surface topography. Consequently, the wear mechanisms as a function of alloy composition and reinforcement type are discussed.<br/
Microstructural evolution of Mn-based maraging steels and their influences on mechanical properties
The microstructural evolution in a set of Mn-based maraging steels (7–12 wt% Mn) when aged at 460–500 ºC for various durations up to 10,080 min and the influences on mechanical properties are systematically investigated. The improved yield strength of peak-aged samples is attributed to the formation of Ni2TiAl precipitates and the precipitation strengthening is governed by Orowan mechanism. Segregation of Mn at grain boundaries in the initial aging stage resulted in severe intergranular brittleness. During further aging, accumulated Mn segregation leading to the formation of ductile lath-like reverted austenite removed the embrittlement and significantly improved the ductility. In the overaged condition, the steady work hardening after yielding compensates the loss of yield strength resulting from the coarsening of precipitates and softening of α′-martensite matrix. There was only limited evidence of the TRIP effect in the reverted austenite, indicating that work hardening was associated with other deformation mechanisms. Increasing the aging temperature or the Mn content of alloy that promotes austenite reversion was demonstrated to accelerate the improvement of ductility
Investigating worn surfaces of nanoscale TiAlN/VN multilayer coating using FIB and TEM
TiAlN/VN multilayer coatings exhibit excellent dry sliding wear resistance and low friction coefficient, believed to be associated with the formation of tribo-films comprising Magnéli phases such as V2O5. In order to investigate this hypothesis, dry sliding wear of TiAlN/VN coatings was undertaken against Al2O3. Focused ion beam was used to generate site-specific TEM specimens. A thin (2-20nm) tribo-film was observed at the worn surface, with occasional 'roll-like' wear debris (φ 5-40nm). Both were amorphous and contained the same Ti, Al and V ratio as the coating, but with the nitrogen largely replaced by oxygen. No evidence of Magnéli phases was found. © 2006 IOP Publishing Ltd
TiAIN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures
The addition of properly selected elements, coupled in nanoscale multilayer structures, can further enhance the properties of TiAlN coatings and bring new high performance. The incorporation of Y in the nanoscale pseudo-superlattice TiAlCrN/TiAlYN with typical period of 1.7 nm not only improves the oxidation resistance but also effectively reduces the coefficient of friction of the coating from 0.9 to 0.65 at temperatures in the range of 850–950 °C. The adaptation of the tribological properties occurs as a result of the preferential migration of the Y to the column boundaries. TiAlN/VN superlattice can achieve another self-adaptation process. During friction the coatings adapt themselves to the combined thermal and mechanical wear by the formation of highly lubricious vanadium-oxides due to high flash temperatures at the asperity contacts on the surface. The integrity of the bulk of the coating is retained, leading to exceptionally low, for superhard coatings, friction coefficient of 0.5 and a wear coefficient of 2 × 10−17 m3·N−1·m−1. The coatings have been deposited by the combined steered cathodic arc unbalanced magnetron sputtering method.</p
The effect of thermomechanical controlled processing on recrystallisation and subsequent deformation-induced ferrite transformation textures in microalloyed steels
The evolution of texture components for two experimental 0.06 wt% C steels, one containing 0.03 wt% Nb (Nb steel) and the second containing both 0.03 wt% Nb and 0.02 wt% Ti (Nb–Ti steel), was investigated following a new thermomechanical controlled process route, comprising first deformation, rapid reheat to 1200 °C and final deformation to various strains. Typical deformation textures were observed after first deformation for both steels. Following subsequent reheating to 1200 °C for various times, the recrystallisation textures consisted primarily of the α-(Formula presented.)//RD texture fibre with a weak γ-{111}//ND texture fibre, similar to deformation textures, indicative of the dominance of a strain-induced boundary migration mechanism. The texture components after finish deformation were different from the rough deformation textures, with a strong α-(Formula presented.)//RD texture fibre at the beginning, and then the strong peaks move to (111)(Formula presented.) and (111)(Formula presented.) textures due to the deformation-induced ferrite (DIF) transformation. The effect of Ti on the recrystallisation textures and deformation textures has also been analysed in this study. The results illustrate that Ti significantly influences the γ-{111}//ND texture fibre. Finally, the textures after deformation and recrystallisation in the austenite were calculated based on the K–S orientation relationship between the austenite and ferrite. This allowed the understanding of the mechanism of recrystallisation between first and final deformation and the DIF textures during phase transformation
Synthesis of magnetocaloric LaFe11.6Si1.4 alloy by spark plasma sintering
LaFe11.6Si1.4 alloys have been successfully fabricated by spark plasma sintering (SPS).
An annealing study of the SPS LaFe11.6Si1.4 alloys at different temperatures ranging from 1373
to 1523 K for annealing times from 30 minutes to 72 hours was carried out. This annealing study
showed that LaFe11.6Si1.4 samples annealed at 1473K (for annealing times between 30 minutes
and 6 hours) have a significantly higher amount of the NaZn13-type phase compared to samples
annealed at other temperatures. Thus the critical annealing temperature which enhances the
formation of the NaZn13-type phase in SPS LaFe11.6Si1.4 compounds is 1473K. A second study
investigated the effect of different particle sizes of the starting powders on the formation of the
NaZn13-type phase. This study found that the samples synthesized using larger sized powder
particles exhibited a significantly higher amount of the NaZn13-type phase compared to samples
synthesized using smaller sized powder particles, for the same heat treatment
Optimization of magnetocaloric properties of arc-melted and spark plasma-sintered LaFe11.6Si1.4
LaFe11.6Si1.4 alloy has been synthesized in polycrystalline form using both arc melting and spark plasma sintering (SPS). The phase formation, hysteresis loss and magnetocaloric properties of the LaFe11.6Si1.4 alloys synthesized using the two different techniques are compared. The annealing time required to obtain the 1:13 phase is significantly reduced from 14 days (using the arc melting technique) to 30 min (using the SPS technique). The magnetic entropy change (ΔSM) for the arc-melted LaFe11.6Si1.4 compound, obtained for a field change of 5 − 0T (decreasing field), was estimated to be 19.6 J kg−1 K−1. The effective RCP at 5T of the arc-melted LaFe11.6Si1.4 compound was determined to be 360 J kg−1 which corresponds to about 88 % of that observed in Gd. A significant reduction in the hysteretic losses in the SPS LaFe11.6Si1.4 compound was observed. The ΔSM, obtained for a field change of 5 − 0T (decreasing field), for the SPS LaFe11.6Si1.4 compound decreases to 7.4 J kg−1 K−1. The TC also shifts from 186 (arc-melted) to 230 K (SPS) and shifts the order of phase transition from first to second order, respectively. The MCE of the SPS LaFe11.6Si1.4 compound spreads over a larger temperature range with the RCP value at 5T reaching 288 J kg−1 corresponding to about 70 % of that observed in Gd. At low fields, the effective RCP values of the arc-melted and spark plasma-sintered LaFe11.6Si1.4 compounds are comparable, thereby clearly demonstrating the potential of SPS LaFe11.6Si1.4 compounds in low-field magnetic refrigeration applications
On the use of cryomilling and spark plasma sintering to achieve high strength in a magnesium alloy
Bulk nanostructured magnesium alloy AZ31 has been produced by spark plasma sintering at four different temperatures from 350 to 450 °C. The effect of sintering temperature on microstructural evolution and compression behaviour was studied in detail. It was concluded that the sample consolidated at 400 °C exhibited the highest strength. Higher sintering temperature (450 °C) improved the compressive strain of the bulk sample but at the sacrifice of strength. However, samples consolidated at 350 °C displayed brittle behaviour with low strength. All consolidated samples had a bimodal microstructure with nanocrystalline and coarse grains. The nanocrystalline microstructure formed by cryomilling was retained after consolidation and a maximum microhardness was approximately 150 HV. The bulk samples consolidated at 400 °C with an average grain size of 45 nm showed exceptional average true compressive yield strength of 400.7 MPa, true ultimate compressive strength of 499.7 MPa, which was superior to published results for most of conventional magnesium alloys. Although nanostructured materials usually have high strength but poor ductility, the material in this study exhibited high strength and a true compressive strain of 0.036
The formation mechanism of reverted austenite in Mn-based maraging steels
Based on the microstructural evolution in Mn-based maraging steels aged at 460–540 °C, the formation mechanism of reverted austenite is proposed. Reverted austenite formed at grain boundaries at the onset of aging. During further aging, the accumulated Mn enrichment at newly formed α′/γ interfaces led to thin austenite layers growing into lath-like austenite grains. The lateral growth of lath-like reverted austenite was sluggish, reflecting the low diffusivity of Mn. We show that reverted austenite formed by a shear-dominated mechanism assisted by a small amount of Mn diffusion, whereas the nucleation of reverted austenite within martensite laths was kinetically slower
- …
