13 research outputs found

    A Unified Framework for Interval Constraints and Interval Arithmetic

    No full text
    We are concerned with interval constraints: solving constraints among real unknowns in such a way that soundness is not affected by rounding errors. The contraction operator for the constraint x + y = z can simply be expressed in terms of interval arithmetic. An attempt to use the analogous definition for fails if the usual definitions of interval arithmetic are used. We propose an alternative to the interval arithmetic definition of interval division so that the two constraints can be handled in an analogous way. This leads to a unified treatment of both interval constraints and interval arithmetic that makes it easy to derive formulas for other constraint contraction operators. We present a theorem that justifies simulating interval arithmetic evaluation of complex expressions by means of constraint propagation. A naive implementation of this simulation is inefficient.We present a theorem that justifies what we call the totality optimization. It makes simulation of expression evaluation by means of constraint propagation as efficient as in interval arithmetic. It also speeds up the contraction operators for primitive constraints

    Introduction to Communication Avoiding Algorithms for Direct Methods of Factorization in Linear Algebra

    No full text
    International audienceModern, massively parallel computers play a fundamental role in a large and rapidly growing number of academic and industrial applications. However, extremely complex hardware architectures, which these computers feature, effectively prevent most of the existing algorithms to scale up to a large number of processors. Part of the reason behind this is the exponentially increasing divide between the time required to communicate a floating-point number between two processors and the time needed to perform a single floating point operation by one of the processors. Previous investigations have typically aimed at overlapping as much as possible communication with computation. While this is important, the improvement achieved by such an approach is not sufficient. The communication problem needs to be addressed also directly at the mathematical formulation and the algorithmic design level. This requires a shift in the way the numerical algorithms are devised, which now need to reduce, or even minimize when possible, the number of communication instances. Communication avoiding algorithms provide such a perspective on designing algorithms that minimize communication in numerical linear algebra. In this document we describe some of the novel numerical schemes employed by those communication avoiding algorithms, with a particular focus on direct methods of factorization

    The Economics of Tort Law:Basics and Selected Core Themes

    No full text

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
    corecore