28 research outputs found

    Application of arabinofuranosyl cytosine in the kinetic analysis and quantitation of DNA repair in human cells after ultraviolet irradiation

    Get PDF
    We have developed a technique whereby 3-h pulses of arabinofuranosyl cytosine (ara-C) and hydroxyurea (HU) are used to analyze the kinetics of repair with time after ultraviolet irradiation in human fibroblasts. We demonstrate that this technique offers a significant improvement over existing repair assays in its ability to visualize between 57 and 100% of all sites undergoing repair in a given period of time. In addition, kinetic analyses of repair are more easily made and yield more information than techniques such as repair replication or unscheduled DNA synthesis. We have also examined the nature of the inhibition event by ara-C and have determined that repair breaks accumulate in the presence of ara-C and HU only up to a certain time beyond which no further breaks appear. The time needed to reach this saturation point depends on the number of sites undergoing repair during the treatment time. This observation is discussed with respect to a possible mechanism of excision repair inhibition by ara-C and HU

    Optical properties of structurally-relaxed Si/SiO2_2 superlattices: the role of bonding at interfaces

    Full text link
    We have constructed microscopic, structurally-relaxed atomistic models of Si/SiO2_2 superlattices. The structural distortion and oxidation-state characteristics of the interface Si atoms are examined in detail. The role played by the interface Si suboxides in raising the band gap and producing dispersionless energy bands is established. The suboxide atoms are shown to generate an abrupt interface layer about 1.60 \AA thick. Bandstructure and optical-absorption calculations at the Fermi Golden rule level are used to demonstrate that increasing confinement leads to (a) direct bandgaps (b) a blue shift in the spectrum, and (c) an enhancement of the absorption intensity in the threshold-energy region. Some aspects of this behaviour appear not only in the symmetry direction associated with the superlattice axis, but also in the orthogonal plane directions. We conclude that, in contrast to Si/Ge, Si/SiO2_2 superlattices show clear optical enhancement and a shift of the optical spectrum into the region useful for many opto-electronic applications.Comment: 11 pages, 10 figures (submitted to Phys. Rev. B
    corecore