120 research outputs found

    29 th Annual meeting of the Society for Immunotherapy of Cancer (SITC)

    Get PDF
    The 29 th annual meeting of the Society for Immunotherapy of Cancer (SITC) was held November 7-9, 2014 in National Harbor, MD and was organized by Dr. Arthur A. Hurwitz (National Cancer Institute), Dr. Kim A. Margolin (Stanford University), Dr. Daniel E. Speiser (Ludwig Center for Cancer Research, University of Lausanne) and Dr. Walter J. Urba (Earle A. Chiles Research Institute, Providence Cancer Center). This meeting included over 1,600 registered participants from 28 separate countries, making it the largest SITC meeting held to date. It highlighted significant worldwide progress in the development and application of cancer immunology to the practice of clinical oncology, including advances in diagnosis, prognosis and therapy, utilizing several immunological pathways and mechanisms for a variety of oncologic conditions. Presentations and posters demonstrated that many concepts that had been pursued preclinically in the past are now being translated into clinical practice, with clear benefits for patients

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Cosmological parameters from CMB and other data: a Monte-Carlo approach

    Full text link
    We present a fast Markov Chain Monte-Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent CMB experiments and provide parameter constraints, including sigma_8, from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m_nu < 0.3eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendices we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters.Comment: Quintessence results now include perturbations. Changes to match version accepted by PRD. MCMC code and data are available at http://cosmologist.info/cosmomc/ along with a B&W printer-friendly version of the pape

    The last stand before MAP: cosmological parameters from lensing, CMB and galaxy clustering

    Get PDF
    Cosmic shear measurements have now improved to the point where they deserve to be treated on par with CMB and galaxy clustering data for cosmological parameter analysis, using the full measured aperture mass variance curve rather than a mere phenomenological parametrization thereof. We perform a detailed 9-parameter analysis of recent lensing (RCS), CMB (up to Archeops) and galaxy clustering (2dF) data, both separately and jointly. CMB and 2dF data are consistent with a simple flat adiabatic scale-invariant model with Omega_Lambda=0.72+/-0.09, omega_cdm=0.115+/- 0.013, omega_b=0.024+/-0.003, and a hint of reionization around z~8. Lensing helps further tighten these constraints, but reveals tension regarding the power spectrum normalization: including the RCS survey results raises sigma8 significantly and forces other parameters to uncomfortable values. Indeed, sigma8 is emerging as the currently most controversial cosmological parameter, and we discuss possible resolutions of this sigma8 problem. We also comment on the disturbing fact that many recent analyses (including this one) obtain error bars smaller than the Fisher matrix bound. We produce a CMB power spectrum combining all existing experiments, and using it for a "MAP versus world" comparison next month will provide a powerful test of how realistic the error estimates have been in the cosmology community.Comment: Added references and Fisher error discussion. Combined CMB data, window and covariance matrix for January "MAP vs World" contest at http://www.hep.upenn.edu/~max/cmblsslens.html or from [email protected]

    Building safety in humanitarian programmes that support post-disaster shelter self-recovery: An evidence review

    Get PDF
    The humanitarian sector is increasingly aware of the role that good quality evidence plays in underpinning effective and accountable practice. This review addresses the need for reliable evidence by evaluating current knowledge about the intersection of two key outcome targets of post‐disaster shelter response ‐ supporting shelter self‐recovery and building back safer. Evidence about post‐disaster shelter programmes that aim to improve hazard resistance whilst supporting shelter self‐recovery has been systematically analysed and evaluated. Technical support, especially training in safer construction techniques, was found to be a key programme feature, but the impact of this and of other programme attributes on building safety was largely not ascertainable. Programme reports lack sufficient detail, especially about the hazard resistance of repaired houses. Accounts of shelter programmes need to include more reliable reporting of key activities and assessment of outcomes, in order to contribute to the growing evidence base in this field

    The growth factor of matter perturbations in an f(R) gravity

    Full text link
    The growth of matter perturbations in the f(R)f(R) model proposed by Starobinsky is studied in this paper. Three different parametric forms of the growth index are considered respectively and constraints on the model are obtained at both the 1σ1\sigma and 2σ2\sigma confidence levels, by using the current observational data for the growth factor. It is found, for all the three parametric forms of the growth index examined, that the Starobinsky model is consistent with the observations only at the 2σ2\sigma confidence level.Comment: 15 pages, 5 figure
    corecore