9 research outputs found

    Dynamical locality of the free scalar field

    Full text link
    Dynamical locality is a condition on a locally covariant physical theory, asserting that kinematic and dynamical notions of local physics agree. This condition was introduced in [arXiv:1106.4785], where it was shown to be closely related to the question of what it means for a theory to describe the same physics on different spacetimes. In this paper, we consider in detail the example of the free minimally coupled Klein--Gordon field, both as a classical and quantum theory (using both the Weyl algebra and a smeared field approach). It is shown that the massive theory obeys dynamical locality, both classically and in quantum field theory, in all spacetime dimensions n2n\ge 2 and allowing for spacetimes with finitely many connected components. In contrast, the massless theory is shown to violate dynamical locality in any spacetime dimension, in both classical and quantum theory, owing to a rigid gauge symmetry. Taking this into account (equivalently, working with the massless current) dynamical locality is restored in all dimensions n2n\ge 2 on connected spacetimes, and in all dimensions n3n\ge 3 if disconnected spacetimes are permitted. The results on the quantized theories are obtained using general results giving conditions under which dynamically local classical symplectic theories have dynamically local quantizations.Comment: 34pp, LaTeX2e. Version to appear in Annales Henri Poincar

    Linear algebra

    No full text
    xiv, 434 p.; 23 cm

    Cayley-hamilton formulae

    No full text

    Quantitative Relations and Approximate Process Equivalences

    No full text
    We introduce a characterisation of probabilistic transition systems (PTS) in terms of linear operators on some suitably defined vector space representing the set of states. Various notions of process equivalences can then be re-formulated as abstract linear operators related to the concrete PTS semantics via a probabilistic abstract interpretation. These process equivalences can be turned into corresponding approximate notions by identifying processes whose abstract operators "differ" by a given quantity, which can be calculated as the norm of the difference operator. We argue that this number can be given a statistical interpretation in terms of the tests needed to distinguish two behaviours

    Phylum XIV. Bacteroidetes phyl. nov.

    No full text
    corecore