284 research outputs found
Inflation in Realistic D-Brane Models
We find successful models of D-brane/anti-brane inflation within a string
context. We work within the GKP-KKLT class of type IIB string vacua for which
many moduli are stabilized through fluxes, as recently modified to include
`realistic' orbifold sectors containing standard-model type particles. We allow
all moduli to roll when searching for inflationary solutions and find that
inflation is not generic inasmuch as special choices must be made for the
parameters describing the vacuum. But given these choices inflation can occur
for a reasonably wide range of initial conditions for the brane and antibrane.
We find that D-terms associated with the orbifold blowing-up modes play an
important role in the inflationary dynamics. Since the models contain a
standard-model-like sector after inflation, they open up the possibility of
addressing reheating issues. We calculate predictions for the CMB temperature
fluctuations and find that these can be consistent with observations, but are
generically not deep within the scale-invariant regime and so can allow
appreciable values for as well as predicting a potentially
observable gravity-wave signal. It is also possible to generate some admixture
of isocurvature fluctuations.Comment: 39 pages, 21 figures; added references; identified parameters
combining successful inflation with strong warping, as needed for consistency
of the approximation
Breakdown of Semiclassical Methods in de Sitter Space
Massless interacting scalar fields in de Sitter space have long been known to
experience large fluctuations over length scales larger than Hubble distances.
A similar situation arises in condensed matter physics in the vicinity of a
critical point, and in this better-understood situation these large
fluctuations indicate the failure in this regime of mean-field methods. We
argue that for non-Goldstone scalars in de Sitter space, these fluctuations can
also be interpreted as signaling the complete breakdown of the semi-classical
methods widely used throughout cosmology. By power-counting the infrared
properties of Feynman graphs in de Sitter space we find that for a massive
scalar interacting through a \lambda \phi^4$ interaction, control over the loop
approximation is lost for masses smaller than m \simeq \sqrt \lambda H/2\pi,
where H is the Hubble scale. We briefly discuss some potential implications for
inflationary cosmology.Comment: 24 pages, 7 figures, v2; added references, clarified the resummation
discussio
Observational consequences of the Standard Model Higgs inflation variants
We consider the possibility to observationally differentiate the Standard
Model (SM) Higgs driven inflation with non-minimal couplingto gravity from
other variants of SM Higgs inflation based on the scalar field theories with
non-canonical kinetic term such as Galileon-like kinetic term and kinetic term
with non-minimal derivative coupling to the Einstein tensor. In order to ensure
consistent results, we study the SM Higgs inflation variants by using the same
method, computing the full dynamics of the background and perturbations of the
Higgs field during inflation at quantum level. Assuming that all the SM Higgs
inflation variants are consistent theories, we use the MCMC technique to derive
constraints on the inflationnoary parameters and the Higgs boson mass from
their fit to WMAP7+SN+BAO data set. We conclude that a combination of a Higgs
mass measurement by the LHC and accurate determination by the PLANCK satellite
of the spectral index of curvature perturbations and tensor-to-scalar ratio
will enable to distinguish among these models. We also show that the
consistency relations of the SM Higgs inflation variants are distinct enough to
differentiate the models.Comment: 22 pages, 4 figure
Spontaneous Creation of Inflationary Universes and the Cosmic Landscape
We study some gravitational instanton solutions that offer a natural
realization of the spontaneous creation of inflationary universes in the brane
world context in string theory. Decoherence due to couplings of higher
(perturbative) modes of the metric as well as matter fields modifies the
Hartle-Hawking wavefunction for de Sitter space. Generalizing this new
wavefunction to be used in string theory, we propose a principle in string
theory that hopefully will lead us to the particular vacuum we live in, thus
avoiding the anthropic principle. As an illustration of this idea, we give a
phenomenological analysis of the probability of quantum tunneling to various
stringy vacua. We find that the preferred tunneling is to an inflationary
universe (like our early universe), not to a universe with a very small
cosmological constant (i.e., like today's universe) and not to a 10-dimensional
uncompactified de Sitter universe. Such preferred solutions are interesting as
they offer a cosmological mechanism for the stabilization of extra dimensions
during the inflationary epoch.Comment: 52 pages, 7 figures, 1 table. Added discussion on supercritical
string vacua, added reference
Inflation and the Scale Dependent Spectral Index: Prospects and Strategies
We consider the running of the spectral index as a probe of both inflation
itself, and of the overall evolution of the very early universe. Surveying a
collection of simple single field inflationary models, we confirm that the
magnitude of the running is relatively consistent, unlike the tensor amplitude,
which varies by orders of magnitude. Given this target, we confirm that the
running is potentially detectable by future large scale structure or 21 cm
observations, but that only the most futuristic measurements can distinguish
between these models on the basis of their running. For any specified
inflationary scenario, the combination of the running index and unknown
post-inflationary expansion history induces a theoretical uncertainty in the
predicted value of the spectral index. This effect can easily dominate the
statistical uncertainty with which Planck and its successors are expected to
measure the spectral index. More positively, upcoming cosmological experiments
thus provide an intriguing probe of physics between TeV and GUT scales by
constraining the reheating history associated with any specified inflationary
model, opening a window into the "primordial dark age" that follows the end of
inflation.Comment: 32 pages. v2 and v3 Minor reference updates /clarification
Open strings in relativistic ion traps
Electromagnetic plane waves provide examples of time-dependent open string
backgrounds free of corrections. The solvable case of open strings in
a quadrupolar wave front, analogous to pp-waves for closed strings, is
discussed. In light-cone gauge, it leads to non-conformal boundary conditions
similar to those induced by tachyon condensates. A maximum electric gradient is
found, at which macroscopic strings with vanishing tension are pair-produced --
a non-relativistic analogue of the Born-Infeld critical electric field. Kinetic
instabilities of quadrupolar electric fields are cured by standard atomic
physics techniques, and do not interfere with the former dynamic instability. A
new example of non-conformal open-closed duality is found. Propagation of open
strings in time-dependent wave fronts is discussed.Comment: 43 pages, 11 figures, Latex2e, JHEP3.cls style; v2: one-loop
amplitude corrected, open-closed duality proved, refs added, miscellaneous
improvements, see historical note in fil
Inflation and Brane Gases
We investigate a new way of realizing a period of cosmological inflation in
the context of brane gas cosmology. It is argued that a gas of co-dimension one
branes, out of thermal equilibrium with the rest of the matter, has an equation
of state which can - after stabilization of the dilaton - lead to power-law
inflation of the bulk. The most promising implementation of this mechanism
might be in Type IIB superstring theory, with inflation of the three large
spatial dimensions triggered by ``stabilized embedded 2-branes''. Possible
applications and problems with this proposal are discussed.Comment: 7 pages, uses REVTeX, version to appear in Phys. Rev.
Reheating from Tachyon Condensation
We argue that it may be possible to reheat the universe after inflation
driven by D-brane annihilation, due to the coupling of massless fields to the
time-dependent tachyon condensate which describes the annihilation process.
This mechanism can work if the original branes annihilate to a stable brane
containing the standard model. Given reasonable assumptions about the shape of
the tachyon background configuration and the size of the relevant extra
dimension, the reheating can be efficient enough to overcome the problem of the
universe being perpetually dominated by cold dark tachyon matter. In
particular, reheating is most efficient when the final brane codimension is
large, and when the derivatives of the tachyon background are large.Comment: 20 pages, 10 figures; corrected discussion of kink-antikink formatio
Academic freedom: in justification of a universal ideal
This paper examines the justification for, and benefits of, academic freedom to academics, students, universities and the world at large. The paper surveys the development of the concept of academic freedom within Europe, more especially the impact of the reforms at the University of Berlin instigated by Wilhelm von Humboldt. Following from this, the paper examines the reasons why the various facets of academic freedom are important and why the principle should continue to be supported
- …