983 research outputs found
Resolution Tests of CsI(Tl) Scintillators Read Out by Pin Diodes
This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
IMF Emission in the 14-N + nat-Ag, Au Reactions at E/A = 60-100 MeV
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
The influence of cluster emission and the symmetry energy on neutron-proton spectral double ratios
Emissions of free neutrons and protons from the central collisions of
124Sn+124Sn and 112Sn+112Sn reactions are simulated using the Improved Quantum
Molecular Dynamics model with two different density dependence of the symmetry
energy in the nuclear equation of state. The constructed double ratios of the
neutron to proton ratios of the two reaction systems are found to be sensitive
to the symmetry terms in the EOS. The effect of cluster formation is examined
and found to affect the double ratios mainly in the low energy region. In order
to extract better information on symmetry energy with transport models, it is
therefore important to have accurate data in the high energy region which also
is affected minimally by sequential decays.Comment: 11 pages, 4 figure
Pazopanib for the Treatment of Patients with Advanced Renal Cell Carcinoma
Dramatic advances in the care of patients with advanced renal cell carcinoma have occurred over the last ten years, including insights into the molecular pathogenesis of this disease, that have now been translated into paradigm-changing therapeutic strategies. Elucidating the importance of signaling cascades related to angiogenesis is notable among these achievements. Pazopanib is a novel small molecule tyrosine kinase inhibitor that targets VEGFR-1, -2, and -3; PDGFR-α, PDGFR-β; and c-kit tyrosine kinases. This agent exhibits a distinct pharmacokinetic profile as well as toxicity profile compared to other agents in the class of VEGF signaling pathway inhibitors. This review will discuss the scientific rationale for the development of pazopanib, as well as preclinical and clinical trials that led to approval of pazopanib for patients with advanced renal cell carcinoma. The most recent information, including data from 2010 national meeting of the American Society of Clinical Oncology, and the design of ongoing Phase III trials, will be discussed. Finally, an algorithm utilizing Level I evidence for the treatment of patients with this disease will be proposed
Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition
BH3-mimetics are a new class of anti-cancer drugs that inhibit anti-apoptotic Bcl-2 proteins. In doing so, BH3-mimetics sensitise to cell death. Venetoclax is a potent, BCL-2 selective BH3-mimetic that is clinically approved for use in chronic lymphocytic leukaemia. Venetoclax has also been shown to inhibit mitochondrial metabolism, this is consistent with a proposed role for BCL-2 in metabolic regulation. We used venetoclax to understand BCL-2 metabolic function. Similar to others, we found that venetoclax inhibited mitochondrial respiration. In addition, we also found that venetoclax impairs TCA cycle activity leading to activation of reductive carboxylation. Importantly, the metabolic effects of venetoclax were independent of cell death because they were also observed in apoptosis-resistant BAX/BAK-deficient cells. However, unlike venetoclax treatment, inhibiting BCL-2 expression had no effect on mitochondrial respiration. Unexpectedly, we found that venetoclax also inhibited mitochondrial respiration and the TCA cycle in BCL-2 deficient cells and in cells lacking all anti-apoptotic BCL-2 family members. Investigating the basis of this off-target effect, we found that venetoclax-induced metabolic reprogramming was dependent upon the integrated stress response and ATF4 transcription factor. These data demonstrate that venetoclax affects cellular metabolism independent of BCL-2 inhibition. This off-target metabolic effect has potential to modulate venetoclax cytotoxicity
Two-Particle Correlation Functions for the 200-MeV 3-He + Ag Reaction
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Phase Behavior of Bent-Core Molecules
Recently, a new class of smectic liquid crystal phases (SmCP phases)
characterized by the spontaneous formation of macroscopic chiral domains from
achiral bent-core molecules has been discovered. We have carried out Monte
Carlo simulations of a minimal hard spherocylinder dimer model to investigate
the role of excluded volume interations in determining the phase behavior of
bent-core materials and to probe the molecular origins of polar and chiral
symmetry breaking. We present the phase diagram as a function of pressure or
density and dimer opening angle . With decreasing , a transition
from a nonpolar to a polar smectic phase is observed near ,
and the nematic phase becomes thermodynamically unstable for . No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included
Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum
This manuscript explores the apparent discrepancy between experimental data
and theoretical calculations of the lattice resistance of bcc tantalum. We
present the first results for the temperature dependence of the Peierls stress
in this system and the first ab initio calculation of the zero-temperature
Peierls stress to employ periodic boundary conditions, which are those best
suited to the study of metallic systems at the electron-structure level. Our ab
initio value for the Peierls stress is over five times larger than current
extrapolations of experimental lattice resistance to zero-temperature. Although
we do find that the common techniques for such extrapolation indeed tend to
underestimate the zero-temperature limit, the amount of the underestimation
which we observe is only 10-20%, leaving open the possibility that mechanisms
other than the simple Peierls stress are important in controlling the process
of low temperature slip.Comment: 12 pages and 9 figure
Black Hole Entropy: From Shannon to Bekenstein
In this note we have applied directly the Shannon formula for information
theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our
analysis is semi-classical in nature since we use the (recently proposed [8])
quantum mechanical near horizon mode functions to compute the tunneling
probability that goes in to the Shannon formula, following the general idea of
[5]. Our framework conforms to the information theoretic origin of Black Hole
entropy, as originally proposed by Bekenstein.Comment: 9 pages Latex, Comments are welcome; Thoroughly revised version,
reference and acknowledgements sections enlarged, numerical error in final
result corrected, no major changes, to appear in IJT
Supermassive Binaries and Extragalactic Jets
Some quasars show Doppler shifted broad emission line peaks. I give new
statistics of the occurrence of these peaks and show that, while the most
spectacular cases are in quasars with strong radio jets inclined to the line of
sight, they are also almost as common in radio-quiet quasars. Theories of the
origin of the peaks are reviewed and it is argued that the displaced peaks are
most likely produced by the supermassive binary model. The separations of the
peaks in the 3C 390.3-type objects are consistent with orientation-dependent
"unified models" of quasar activity. If the supermassive binary model is
correct, all members of "the jet set" (astrophysical objects showing jets)
could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see
http://www.aas.org/ApJ/v464n2/5736/5736.html
- …