61 research outputs found
Modeling Life as Cognitive Info-Computation
This article presents a naturalist approach to cognition understood as a
network of info-computational, autopoietic processes in living systems. It
provides a conceptual framework for the unified view of cognition as evolved
from the simplest to the most complex organisms, based on new empirical and
theoretical results. It addresses three fundamental questions: what cognition
is, how cognition works and what cognition does at different levels of
complexity of living organisms. By explicating the info-computational character
of cognition, its evolution, agent-dependency and generative mechanisms we can
better understand its life-sustaining and life-propagating role. The
info-computational approach contributes to rethinking cognition as a process of
natural computation in living beings that can be applied for cognitive
computation in artificial systems.Comment: Manuscript submitted to Computability in Europe CiE 201
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Recommended from our members
Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor
The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs
HIGH-STRENGTH MATERIALS FOR PRESSURIZED-WATER IN-PILE TUBES
The preliminary work done by Westinghouse on properties of materials suitable for the in-pile testing facility was reviewed. Information was collected on a selected list of promising materials in the following classificrtions: alloy steels, chromium steels, precipitation-hardening stainless steels, and superalloys. On the basis of the information obtained from Westinghouse, from the literature survey, from Battelle files, and from visits to producers, it is recommended that Phase II of the program be confined to Inconel X hot rolled and aged, AM-350 subzero cooled and tempered, and Discaloy solution treated and aged. (auth
Recommended from our members
The TRUPACT-II Matrix Depleton Program
Contact-handled transuranic (CH-TRU) wastes will be shipped and disposed at the Waste Isolation Pilot Plant (WIPP) repository in the Transuranic Package Transporter-II (TRUPACT-II) shipping package. A primary transportation requirement for the TRUPACT-II is that the concentration of potentially flammable gases (i.e., hydrogen and methane) must not exceed 5 percent by volume in the package or the payload during a 60-day shipping period. Decomposition of waste materials by radiation, or radiolysis, is the predominant mechanism of gas generation during transport. The gas generation potential of a target waste material is characterized by a G-value, which is the number of molecules of gas generated per 100 eV of ionizing radiation absorbed by the target material. To demonstrate compliance with the flammable gas concentration requirement, theoretical worst-case calculations were performed to establish allowable wattage (decay heat) limits for waste containers. The calculations were based on the G-value for the waste material with the highest potential for flammable gas generation. The calculations also made no allowances for decreases of the G-value over time due to matrix depletion phenomena that have been observed by many experimenters. Matrix depletion occurs over time when an alpha-generating source particle alters the target material (by evaporation, reaction, or decomposition) into a material of lower gas generating potential. The net effect of these alterations is represented by the ``effective G-value.`
- …