13 research outputs found

    Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules

    Full text link
    We discuss the magnetocaloric properties of gadolinium containing magnetic molecules which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic processes to low temperatures and simultaneously minimize disturbing dipolar interactions. Since the Hilbert spaces of such spin systems assume very large dimensions we evaluate the necessary thermodynamic observables by means of the Finite-Temperature Lanczos Method.Comment: 7 pages, 10 figures, invited for the special issue of EPJB on "New trends in magnetism and magnetic materials

    Magnetocaloric effect in spin-1/2 XXXX chains with three-spin interactions

    Full text link
    We consider the exactly solvable spin-1/2 XXXX chain with the three-spin interactions of the XZX+YZYXZX+YZY and XZYYZXXZY-YZX types in an external (transverse) magnetic field. We calculate the entropy and examine the magnetocaloric effect for the quantum spin system. We discuss a relation between the cooling/heating efficiency and the ground-state phase diagram of the quantum spin model. We also compare ability to cool/heat in the vicinity of the quantum critical and triple points. Moreover, we examine the magnetocaloric effect for the spin-1/2 XXXX chain with three-spin interactions in a random (Lorentzian) transverse magnetic field.Comment: 10 pages, 8 figure

    Overview of the Characteristic Features of the Magnetic Phase Transition with Regards to the Magnetocaloric Effect: the Hidden Relationship Between Hysteresis and Latent Heat

    Get PDF
    This article was published in the journal, Metallurgical and Materials Transactions E [Springer / © The Minerals, Metals & Materials Society and ASM International]. The final publication is available at Springer via http://dx.doi.org/10.1007/s40553-014-0015-8The magnetocaloric effect has seen a resurgence in interest over the last 20 years as a means towards an alternative energy efficient cooling method. This has resulted in a concerted effort to develop the so-called “giant” magnetocaloric materials with large entropy changes that often come at the expense of hysteretic behavior. But do the gains offset the disadvantages? In this paper, we review the relationship between the latent heat of several giant magnetocaloric systems and the associated magnetic field hysteresis. We quantify this relationship by the parameter Δμ 0 H/ΔS L, which describes the linear relationship between field hysteresis, Δμ 0 H, and entropy change due to latent heat, ΔS L. The general trends observed in these systems suggest that itinerant magnets appear to consistently show large ΔS L accompanied by small Δμ 0 H (Δμ 0 H/ΔS L = 0.02 ± 0.01 T/(J K−1 kg−1)), compared to local moment systems, which show significantly larger Δμ 0 H as ΔS L increases (Δμ 0 H/ΔS L = 0.14 ± 0.06 T/(J K−1 kg−1))

    Heat Capacity of Solid HCl near 120 K

    No full text

    Who discovered the magnetocaloric effect?:Warburg, Weiss, and the connection between magnetism and heat

    No full text
    A magnetic body changes its thermal state when subjected to a changing magnetic field. In particular, if done under adiabatic conditions, its temperature changes. For the past 15 years the magnetocaloric effect has been the focus of significant research due to its possible application for efficient refrigeration near room temperature. At the same time, it has become common knowledge within the magnetic refrigeration research community that the magnetocaloric effect was discovered by the German physicist E. Warburg in 1881. We re-examine the original literature and show that this is a misleading reading of what Warburg did, and we argue that the discovery of the effect should instead be attributed to P. Weiss and A. Piccard in 1917

    Cooling of a Fermi quantum plasma

    No full text
    We propose an adiabatic magnetization process for cooling a Fermi electron gas to ultra-low temperatures as an alternative to the known adiabatic demagnetization mechanism. We show via a new adiabatic equation that at the constant density the increase of the magnetic field leads to the temperature decrease as T ~ 1/H2. This process is identified in our numerical calculations, in which we also recover the adiabatic demagnetization mechanism for certain range
    corecore