23 research outputs found

    Approximation schemes for packing splittable items with cardinality constraints

    No full text
    We continue the study of bin packing with splittable items and cardinality constraints. In this problem, a set of items must be packed into as few bins as possible. Items may be split, but each bin may contain at most k (parts of) items, where k is some fixed constant. Complicating the problem further is the fact that items may be larger than 1, which is the size of a bin. We close this problem by providing a polynomial-time approximation scheme for it. We first present a scheme for the case k = 2 and then for the general case of constant k. Additionally, we present dual approximation schemes for k = 2 and constant k. Thus we show that for any ε> 0, it is possible to pack the items into the optimal number of bins in polynomial time, if the algorithm may use bins of size 1 + ε

    Guard Games on Graphs: Keep the Intruder Out!

    Get PDF
    A team of mobile agents, called guards, tries to keep an intruder out of an assigned area by blocking all possible attacks. In a graph model for this setting, the guards and the intruder are located on the vertices of a graph, and they move from node to node via connecting edges. The area protected by the guards is an induced subgraph of the given graph. We investigate the algorithmic aspects the guarding problem, which is to find the minimum number of guards sufficient to patrol the area. We show that the guarding problem is PSPACE-hard and provide a set of approximation algorithms. All approximation algorithms are based on the study of a variant of the game where the intruder must reach the guarded area in a single step in order to win. This variant of the game appears to be a 2-approximation for the guarding problem, and for graphs without cycles of length 5 the minimum number of required guards in both games coincides. We give a polynomial time algorithm for solving the one-step guarding problem in graphs of bounded treewidth, and complement this result by showing that the problem is W[1]-hard parameterized by the treewidth of the input graph. We also show that the problem is fixed parameter tractable (FPT) parameterized by the treewidth and maximum degree of the input graph. Finally, we turn our attention to a large class of sparse graphs, including plana
    corecore