102 research outputs found

    Strong Coupling Correction in Superfluid 3^3He in Aerogel

    Full text link
    Effects of impurity scatterings on the strong coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau (GL) free energy of superfluid 3^3He are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid 3^3He in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys.Rev.B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally.Comment: 19 pages, 9 figures, Accepted for publication in Phys. Rev.

    Nodes of the Gap Function and Anomalies in Thermodynamic Properties of Superfluid 3^3He

    Full text link
    Departures of thermodynamic properties of three-dimensional superfluid 3^3He from the predictions of BCS theory are analyzed. Attention is focused on deviations of the ratios Δ(T=0)/Tc\Delta(T=0)/T_c and [Cs(Tc)Cn(Tc)]/Cn(Tc)[C_s(T_c)-C_n(T_c)]/C_n(T_c) from their BCS values, where Δ(T=0)\Delta(T=0) is the pairing gap at zero temperature, TcT_c is the critical temperature, and CsC_s and CnC_n are the superfluid and normal specific heats. We attribute these deviations to the momentum dependence of the gap function Δ(p)\Delta(p), which becomes well pronounced when this function has a pair of nodes lying on either side of the Fermi surface. We demonstrate that such a situation arises if the P-wave pairing interaction V(p1,p2)V(p_1,p_2), evaluated at the Fermi surface, has a sign opposite to that anticipated in BCS theory. Taking account of the momentum structure of the gap function, we derive a closed relation between the two ratios that contains no adjustable parameters and agrees with the experimental data. Some important features of the effective pairing interaction are inferred from the analysis.Comment: 17 pages, 4 figure

    On the Nagaoka polaron in the t-J model

    Full text link
    It is widely believed that a single hole in the two (or three) dimensional t-J model, for sufficiently small exchange coupling J, creates a ferromagnetic bubble around itself, a finite J remnant of the ferromagnetic groundstate at J=0 (the infinite U Hubbard model), first established by Nagaoka. We investigate this phenomenon in two dimensions using the density matrix renormalization group, for system sizes up to 9x9. We find that the polaron forms for J/t<0.02-0.03 (a somewhat larger value than estimated previously). Although finite-size effects appear large, our data seems consistent with the expected 1.1(J/t)^{-1/4} variation of polarion radius. We also test the Brinkman-Rice model of non-retracing paths in a Neel background, showing that it is quite accurate, at larger J. Results are also presented in the case where the Heisenberg interaction is dropped (the t-J^z model). Finally we discuss a "dressed polaron" picture in which the hole propagates freely inside a finite region but makes only self-retracing excursions outside this region.Comment: 7 pages, 9 encapsulated figure

    Effective-Medium Theory for the Normal State in Orientationally Disordered Fullerides

    Full text link
    An effective-medium theory for studying the electronic structure of the orientationally disordered A3C60 fullerides is developed and applied to study various normal-state properties. The theory is based on a cluster-Bethe-lattice method in which the disordered medium is modelled by a three-band Bethe lattice, into which we embed a molecular cluster whose scattering properties are treated exactly. Various single-particle properties and the frequency-dependent conductivity are calculated in this model, and comparison is made with numerical calculations for disordered lattices, and with experiment.Comment: 12 pages + 2 figures, REVTeX 3.

    Hole dynamics in a quantum antiferromagnet beyond the retraceable path approximation

    Full text link
    The one-hole spectral weight for two chains and two dimensional lattices is studied numerically using a new method of analysis of the spectral function within the Lanczos iteration scheme: the Lanczos spectra decoding method. This technique is applied to the tJzt-J_z model for Jz0J_z \to 0, directly in the infinite size lattice. By a careful investigation of the first 13 Lanczos steps and the first 26 ones for the two dimensional and the two chain cases respectively, we get several new features of the one-hole spectral weight. A sharp incoherent peak with a clear momentum dispersion is identified, together with a second broad peak at higher energy. The spectral weight is finite up to the Nagaoka energy where it vanishes in a non-analytic way. Thus the lowest energy of one hole in a quantum antiferromagnet is degenerate with the Nagaoka energy in the thermodynamic limit.Comment: RevTeX 3.0, SISSA preprint 156/93/CM/MB, 10 pages + postscript file appended, contains more accurate calculations in Fig.

    Interaction Effect in the Kondo Energy of the Periodic Anderson-Hubbard Model

    Full text link
    We extend the periodic Anderson model by switching on a Hubbard UdU_d for the conduction electrons. The nearly integral valent (Kondo) limit of the Anderson--Hubbard model is studied with the Gutzwiller variational method. The new formula for the Kondo energy contains the UdU_d-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization (this behaviour is the opposite of that found for Kondo--Hubbard models). At half-filling, we find a Brinkman--Rice-type transition which leads from a small-gap Kondo insulator to a Mott insulator.Comment: 4 pages (ReVTeX), submitted for publicatio

    Even and odd-frequency pairing correlations in 1-D t-J-h model: a comparative study

    Full text link
    An equal time version of odd-frequency pairing for a generalized tJt-J model is introduced. It is shown that the composite operators describing binding of Cooper pairs with magnetization fluctuations naturally appear in this approach. The pairing correlations in both BCS and odd-frequency channels are investigated exactly in 1D systems with up to 16 sites. Our results indicate that at some range of parameters odd-frequency correlations become comparable, however smaller than BCS pairing correlations. It is speculated that the spin and density fluctuations in the frustrated model lead to the enhancement of the odd gap susceptibilities. 4 postscript figure files are attached at the bottom of the tex file.Comment: 6 pages + 4 figure

    Quantum Monte Carlo treatment of elastic exciton-exciton scattering

    Full text link
    We calculate cross sections for low energy elastic exciton-exciton scattering within the effective mass approximation. Unlike previous theoretical approaches, we give a complete, non-perturbative treatment of the four-particle scattering problem. Diffusion Monte Carlo is used to calculate the essentially exact energies of scattering states, from which phase shifts are determined. For the case of equal-mass electrons and holes, which is equivalent to positronium-positronium scattering, we find a_s = 2.1 a_x for scattering of singlet-excitons and a_s= 1.5 a_x for triplet-excitons, where a_x is the excitonic radius. The spin dependence of the cross sections arises from the spatial exchange symmetry of the scattering wavefunctions. A significant triplet-triplet to singlet-singlet scattering process is found, which is similar to reported effects in recent experiments and theory for excitons in quantum wells. We also show that the scattering length can change sign and diverge for some values of the mass ratio m_h/m_e, an effect not seen in previous perturbative treatments.Comment: 6 pages, 6 figures. Revision has updated figures, improved paper structure, some minor correction

    Temperature Dependence of Hall Response in Doped Antiferromagnets

    Full text link
    Using finite-temperature Lanczos method the frequency-dependent Hall response is calculated numerically for the t-J model on the square lattice and on ladders. At low doping, both the high-frequency RH* and the d.c. Hall coefficient RH0 follow qualitatively similar behavior at higher temperatures: being hole-like for T > Ts~1.5J and weakly electron-like for T < Ts. Consistent with experiments on cuprates, RH0 changes, in contrast to RH*, again to the hole-like sign below the pseudogap temperature T*, revealing a strong temperature variation for T->0.Comment: LaTeX, 4 pages, 4 figures, submitted to PR

    Comparison of Variational Approaches for the Exactly Solvable 1/r-Hubbard Chain

    Full text link
    We study Hartree-Fock, Gutzwiller, Baeriswyl, and combined Gutzwiller-Baeriswyl wave functions for the exactly solvable one-dimensional 1/r1/r-Hubbard model. We find that none of these variational wave functions is able to correctly reproduce the physics of the metal-to-insulator transition which occurs in the model for half-filled bands when the interaction strength equals the bandwidth. The many-particle problem to calculate the variational ground state energy for the Baeriswyl and combined Gutzwiller-Baeriswyl wave function is exactly solved for the~1/r1/r-Hubbard model. The latter wave function becomes exact both for small and large interaction strength, but it incorrectly predicts the metal-to-insulator transition to happen at infinitely strong interactions. We conclude that neither Hartree-Fock nor Jastrow-type wave functions yield reliable predictions on zero temperature phase transitions in low-dimensional, i.e., charge-spin separated systems.Comment: 23 pages + 3 figures available on request; LaTeX under REVTeX 3.
    corecore