124 research outputs found
A progressive refinement approach for the visualisation of implicit surfaces
Visualising implicit surfaces with the ray casting method is a slow procedure. The design cycle of a new implicit surface is, therefore, fraught with long latency times as a user must wait for the surface to be rendered before being able to decide what changes should be introduced in the next iteration. In this paper, we present an attempt at reducing the design cycle of an implicit surface modeler by introducing a progressive refinement rendering approach to the visualisation of implicit surfaces. This progressive refinement renderer provides a quick previewing facility. It first displays a low quality estimate of what the final rendering is going to be and, as the computation progresses, increases the quality of this estimate at a steady rate. The progressive refinement algorithm is based on the adaptive subdivision of the viewing frustrum into smaller cells. An estimate for the variation of the implicit function inside each cell is obtained with an affine arithmetic range estimation technique. Overall, we show that our progressive refinement approach not only provides the user with visual feedback as the rendering advances but is also capable of completing the image faster than a conventional implicit surface rendering algorithm based on ray casting
Modern topics in theoretical nuclear physics
Over the past five years there have been profound advances in nuclear physics
based on effective field theory and the renormalization group. In this brief,
we summarize these advances and discuss how they impact our understanding of
nuclear systems and experiments that seek to unravel their unknowns. We discuss
future opportunities and focus on modern topics in low-energy nuclear physics,
with special attention to the strong connections to many-body atomic and
condensed matter physics, as well as to astrophysics. This makes it an exciting
era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting
at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde
Sensitivity analysis of reactive ecological dynamics
Author Posting. © Springer, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Bulletin of Mathematical Biology 70 (2008): 1634-1659, doi:10.1007/s11538-008-9312-7.Ecological systems with asymptotically stable equilibria may exhibit significant transient
dynamics following perturbations. In some cases, these transient dynamics include
the possibility of excursions away from the equilibrium before the eventual return; systems
that exhibit such amplification of perturbations are called reactive. Reactivity is
a common property of ecological systems, and the amplification can be large and long-lasting.
The transient response of a reactive ecosystem depends on the parameters of
the underlying model. To investigate this dependence, we develop sensitivity analyses
for indices of transient dynamics (reactivity, the amplification envelope, and the optimal
perturbation) in both continuous- and discrete-time models written in matrix form.
The sensitivity calculations require expressions, some of them new, for the derivatives
of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix
calculus. Sensitivity analysis provides a quantitative framework for investigating the
mechanisms leading to transient growth. We apply the methodology to a predator-prey
model and a size-structured food web model. The results suggest predator-driven and
prey-driven mechanisms for transient amplification resulting from multispecies interactions.Financial support provided by NSF grant DEB-0343820, NOAA grant NA03-NMF4720491,
the Ocean Life Institute of the Woods Hole Oceanographic Institution, and the Academic
Programs Office of the MIT-WHOI Joint Program in Oceanography
- …