7 research outputs found

    Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.

    No full text
    T cells that accompany allogeneic hematopoietic grafts for treating leukemia enhance engraftment and mediate the graft-versus-leukemia effect. Unfortunately, alloreactive T cells also cause graft-versus-host disease (GVHD). T cell depletion prevents GVHD but increases the risk of graft rejection and leukemic relapse. In human transplants, we show that donor-versus-recipient natural killer (NK)-cell alloreactivity could eliminate leukemia relapse and graft rejection and protect patients against GVHD. In mice, the pretransplant infusion of alloreactive NK cells obviated the need for high-intensity conditioning and reduced GVHD. NK cell alloreactivity may thus provide a powerful tool for enhancing the efficacy and safety of allogeneic hematopoietic transplantation

    Graft-versus-host disease is locally maintained in target tissues by resident progenitor-like T cells.

    No full text
    In allogeneic hematopoietic stem cell transplantation, donor αβ T cells attack recipient tissues, causing graft-versus-host disease (GVHD), a major cause of morbidity and mortality. A central question has been how GVHD is sustained despite T cell exhaustion from chronic antigen stimulation. The current model for GVHD holds that disease is maintained through the continued recruitment of alloreactive effectors from blood into affected tissues. Here, we show, using multiple approaches including parabiosis of mice with GVHD, that GVHD is instead primarily maintained locally within diseased tissues. By tracking 1,203 alloreactive T cell clones, we fitted a mathematical model predicting that within each tissue a small number of progenitor T cells maintain a larger effector pool. Consistent with this, we identified a tissue-resident TCF-1 <sup>+</sup> subpopulation that preferentially engrafted, expanded, and differentiated into effectors upon adoptive transfer. These results suggest that therapies targeting affected tissues and progenitor T cells within them would be effective

    NCI First International Workshop on The Biology, Prevention, and Treatment of Relapse After Allogeneic Hematopoietic Stem Cell Transplantation: Report from the Committee on the Biology Underlying Recurrence of Malignant Disease following Allogeneic HSCT: Graft-versus-Tumor/Leukemia Reaction

    No full text
    The success of allogeneic hematopoietic stem cell transplantation (HSCT) depends on the infusion of benign stem cells as well as lymphocytes capable of participating in a graft-versus-tumor/leukemia (GVL) reaction. Clinical proof of concept is derived from studies showing increased relapse after the infusion of lymphocyte depleted hematopoietic grafts as well as the therapeutic efficacy of donor lymphocyte infusions without chemotherapy to treat relapse in some diseases. Despite this knowledge, relapse after allogeneic HSCT is common with rates approaching 40% in those with high-risk disease. In this review, we cover the basic biology and potential application to exploit adaptive T cell responses, minor histocompatibility antigens, contraction and suppression mechanisms that hinder immune responses, adaptive B cell responses and innate NK cell responses, all orchestrated in a GVL reaction. Optimal strategies to precisely balance immune responses to favor GVL without harmful graft-versus-host disease (GVHD) are needed to protect against relapse, treat persistent disease and improve disease-free survival after HSCT.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease
    corecore