31 research outputs found

    Suggestions for a non-monotonic feature logic

    Get PDF
    We use Scott's domain theory and methods from Reiter's default logic to suggest some ways of modelling default constraints in feature logic. We show how default feature rules, derived from default constraints, can be used to give ways to augment strict feature structures with default information

    A computational group theoretic symmetry reduction package for the SPIN model checker

    Get PDF
    Symmetry reduced model checking is hindered by two problems: how to identify state space symmetry when systems are not fully symmetric, and how to determine equivalence of states during search. We present TopSpin, a fully automatic symmetry reduction package for the Spin model checker. TopSpin uses the Gap computational algebra system to effectively detect state space symmetry from the associated Promela specification, and to choose an efficient symmetry reduction strategy by classifying automorphism groups as a disjoint/wreath product of subgroups. We present encouraging experimental results for a variety of Promela examples

    R-Charon, a Modeling Language for Reconfigurable Hybrid Systems

    Get PDF
    This paper describes the modeling language as an extension for architectural reconfiguration to the existing distributed hybrid system modeling language Charon. The target application domain of R-Charon includes but is not limited to modular reconfigurable robots and large-scale transportation systems. While largely leaving the Charon syntax and semantics intact, R-Charon allows dynamic creation and destruction of components (agents) as well as of links (references) between the agents. As such, R-Charon is the first formal, hybrid automata based modeling language which also addresses dynamic reconfiguration. We develop and present the syntax and operational semantics for R-Charon on three levels: behavior (modes), structure (agents) and configuration (system)

    Branching Pushdown Tree Automata ⋆

    Get PDF
    Abstract. We observe that pushdown tree automata (PTAs) known in the literature cannot express combinations of branching and pushdown properties. This is because a PTA processes the children of a tree node in possibly different control states but with identical stacks. We propose branching pushdown tree automata (BPTAs) as a solution. In a BPTA, a push-move views its matching pops as an unbounded, unordered set of successor moves and can assert existential and universal requirements on them, just the way finite automata on unranked, unordered trees pass requirements to the children of a tree node. We show that BPTAs can express some natural properties and are more expressive than PTAs. Using a small-model theorem, we prove their emptiness problem to be decidable. The problem becomes undecidable, however, if push-moves are allowed to specify the ordering of matching pops.

    Benefits of Tree Transducers for Optimizing Functional Programs

    No full text
    We present a technique to prevent the construction of intermediate data structures in functional programs, which is based on results from the theory of tree transducers. We first decompose function definitions, which correspond to macro tree transducers, into smaller pieces. Under certain restrictions..

    M.: Querying formal contexts with answer set programs

    Get PDF
    Abstract. Recent studies showed how a seamless integration of formal concept analysis (FCA), logic of domains, and answer set programming (ASP) can be achieved. Based on these results for combining hierarchical knowledge with classical rule-based formalisms, we introduce an expressive common-sense query language for formal contexts. Although this approach is conceptually based on order-theoretic paradigms, we show how it can be implemented on top of standard ASP systems. Advanced features, such as default negation and disjunctive rules, thus become practically available for processing contextual data.
    corecore