
Wright State University Wright State University

CORE Scholar CORE Scholar

Computer Science and Engineering Faculty
Publications Computer Science & Engineering

7-1-2006

Querying Formal Contexts with Answer Set Programs Querying Formal Contexts with Answer Set Programs

Pascal Hitzler
pascal.hitzler@wright.edu

Markus Krotzsch

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Hitzler, P., & Krotzsch, M. (2006). Querying Formal Contexts with Answer Set Programs. Lecture Notes in
Computer Science, 4068, 260-273.
https://corescholar.libraries.wright.edu/cse/38

This Conference Proceeding is brought to you for free and open access by Wright State University’s CORE Scholar.
It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized
administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36748763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fcse%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fcse%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fcse%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fcse%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fcse%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fcse%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Querying formal contexts with answer set
programs?

Pascal Hitzler and Markus Krötzsch

AIFB, University of Karlsruhe, Germany

Abstract. Recent studies showed how a seamless integration of formal
concept analysis (FCA), logic of domains, and answer set programming
(ASP) can be achieved. Based on these results for combining hierarchical
knowledge with classical rule-based formalisms, we introduce an expres-
sive common-sense query language for formal contexts. Although this
approach is conceptually based on order-theoretic paradigms, we show
how it can be implemented on top of standard ASP systems. Advanced
features, such as default negation and disjunctive rules, thus become
practically available for processing contextual data.

1 Introduction

At the heart of formal concept analysis (FCA) lies the formation of formal con-
cepts from formal contexts. As such, formal concept analysis is a powerful tool
for extracting conceptual hierarchies from raw data. The resulting lattices struc-
ture the knowledge hidden in the raw data, i.e. formal contexts, in a way which
appeals to human experts, and allows them to navigate the data in a new way
in order to understand relationships or create new hypotheses.

Formal concept analysis thus has a commonsense knowledge representation
aspect. This also becomes apparent by its multiple uses in the creation of ontolo-
gies for the semantic web. It serves as a basic tool for the conceptualization of
data, and the conceptual hierarchies obtained from it can often form a modelling
base for ontologies in more expressive logical languages.

In this paper, we address the question of querying the conceptual knowl-
edge hidden within a formal context. We present a query language based on
commonsense reasoning research in artificial intelligence. It allows to query for-
mal contexts by means of logic programs written over attributes and objects,
and features default negation in the sense of the knowledge representation and
reasoning systems known as answer set programming (ASP).

Our results will also show how the resulting query system can be implemented
on top of standard ASP systems, which allows to utilize the highly optimized
systems currently available. Our work also sheds some foundational light on ASP
? The authors acknowledge support by the German Federal Ministry of Education and

Research (BMBF) under the SmartWeb project, and by the European Commission
under contract IST-2003-506826 SEKT and under the KnowledgeWeb Network of
Excellence.

2 Hitzler and Krötzsch

itself, whose theoretical underpinnings, in particular in relation to order-theoretic
perspectives, are not yet understood in a satisfactory way.

The paper will be structured as follows. We first review the foundational
results from [1] which serve as a base for our contribution. Section 2 introduces
the logical formalism of reasoning on hierarchical knowledge that we will build
upon, and recalls some basics of formal concept analysis. Section 3 discusses de-
fault negation for conceptual hierarchies. Section 4 describes the query language
which we introduce. In Section 5 we present the theoretical results which enable
the implementation of the querying system on top of the dlv ASP system. We
close with the discussion of related and future work in Section 6.

2 Logic of domains and FCA

We need to establish a certain amount of formal terminology in order to be able
to motivate our contribution. This will be done in this and the next section.
Following [2], we first introduce the logic of domains, and then recall the basics
of formal concept analysis.

We assume the reader to be familiar with the basic notions of order theory,
and recall only the relevant notions of domain theory. Thus let (D,v) be a
partially ordered set. A subset X ⊆ D is directed if, for all x, y ∈ X, there is
z ∈ X with x v z and y v z. We say that D is a complete partial order (cpo)
if every directed set X ⊆ D has a least upper bound

⊔
X ∈ D. Note that we

consider the empty set to be directed, and that any cpo thus must have a least
element

⊔
∅ that we denote by ⊥.

An element c ∈ D is compact if, whenever c v
⊔

X for some directed set X,
there exists x ∈ X with c v x. The set of all compact elements of D is written
as K(D). An algebraic cpo is a cpo in which every element d ∈ D is the least
upper bound of the – necessarily directed – set {c v d | c ∈ K(D)} of compact
elements below it.

A set O ⊆ D is Scott open if it is upward closed, and inaccessible by directed
suprema, i.e., for any directed set X ⊆ D, we have

⊔
X ∈ O if and only if

O ∩ X 6= ∅. The Scott topology on D is the collection of all Scott open sets
of D, and a Scott open set is compact, if it is compact as an element of the
Scott topology ordered under subset inclusion. A coherent algebraic cpo is an
algebraic cpo such that the intersection of any two compact open sets is compact
open. Coherency of an algebraic cpo implies that the set of all minimal upper
bounds of a finite number of compact elements is finite, i.e. if c1, . . . , cn are
compact elements, then the set mub{c1, . . . , cn} of minimal upper bounds of
these elements is finite. As usual, we set mub ∅ = {⊥}, where ⊥ is the least
element of D.

In the following, (D,v) will always be assumed to be a coherent algebraic
cpo. We will also call these spaces domains. All of the above notions are standard
and can be found e.g. in [3].

We can now define the basic notions of domain logic. The following is taken
from [2], where further details can be found.

Querying formal contexts with answer set programs 3

Definition 1. Let D be a coherent algebraic cpo with set K(D) of compact ele-
ments. A clause of D is a finite subset of K(D). Given a clause X over D, and
an element m ∈ D, we write m |= X if there exists x ∈ X with x v m, i.e. X
contains an element below m. In this case, we say that m is a model of X.

The clausal logic introduced in Definition 1 will henceforth be called the
Logic RZ for convenience.

Example 1. In [2], the following running example was given. Consider a count-
ably infinite set of propositional variables V, and the set T = {f ,u, t} of truth
values ordered by u < f and u < t. This induces a pointwise ordering on the
space TV of all interpretations (or partial truth assignments). The partially or-
dered set TV is a coherent algebraic cpo1 and has been studied, e.g., in [4] in a
domain-theoretic context, and in [5] in a logic programming context. Compact
elements in TV are those interpretations which map all but a finite number of
propositional variables to u. We denote compact elements by strings such as pqr,
which indicates that p and q are mapped to t, and r is mapped to f . Clauses in
TV can be identified with formulae in disjunctive normal form, e.g. {pqr, pq, r}
translates to (p ∧ q ∧ ¬r) ∨ (¬p ∧ q) ∨ r.

The Logic RZ provides a framework for reasoning with disjunctive informa-
tion. However, it is also possible to encode conjunctive information: given a finite
set X of compact elements of a domain D, the “conjunction” of the elements of
D can be expressed by the clause mub(D). Indeed, whenever an element models
all members of X, it is greater or equal than one of the minimal upper bounds
of X.

Example 2. Consider the domain TV of Example 1. The set of minimal upper
bounds of every finite set of compact elements in TV is either singleton or empty.
For instance, the only minimal (and therefore least) upper bound of pr and pq
is pqr.

The Logic RZ enables logical reasoning with respect to a background theory
of hierarchical knowledge that is encoded in the structure of the domain. Formal
concept analysis (FCA), in contrast, provides techniques for representing data
in form of conceptual hierarchies, that allow for simple relational descriptions.
We quickly review the basic notions of FCA, and refer to [6] for an in-depth
treatment.

A (formal) context K is a triple (G, M, I) consisting of a set G of objects,
a set M of attributes, and an incidence relation I ⊆ G ×M . Without loss of
generality, we assume that G ∩M = ∅. For g ∈ G and m ∈ M we write g I m
for (g,m) ∈ I, and say that g has the attribute m.

For a set O ⊆ G of objects, we set O′ = {m ∈ M | g I m for all g ∈ O},
and for a set A ⊆ M of attributes we set A′ = {g ∈ G | g I m for all m ∈ A}.
A (formal) concept of K is a pair (O,A) with O ⊆ G and A ⊆ M , such that
O′ = A and A′ = O. We call O the extent and A the intent of the concept (O, A).
1 In fact it is also bounded complete.

4 Hitzler and Krötzsch

The set B(K) of all concepts of K is a complete lattice with respect to the order
defined by (O1, A1) ≤ (O2, A2) if and only if O1 ⊆ O2, which is equivalent to
the condition A2 ⊆ A1. B(K) is called the concept lattice of K.

The mappings (·)′ are closure operators, which, under appropriate conditions,
can be regarded as logical closures of theories in the Logic RZ. Details on this
relationship between Logic RZ and formal concept analysis can be found in [7].

3 Logic programming in the Logic RZ

In this section, we discuss how the Logic RZ can be extended to a logic pro-
gramming paradigm, thus adding disjunctive rules and default negation to the
expressive features of the formalism. In addition, we review the classical ap-
proach of answer set programming that will be related to logic programming in
the Logic RZ in Section 5.

Following [2], we first explain how the Logic RZ can be extended naturally
to a disjunctive logic programming paradigm.

Definition 2. A (disjunctive logic) program over a domain D is a set P of
rules of the form Y ← X, where X, Y are clauses over D. An element w ∈ D is
a model of P if, for every rule Y ← X in P , if w |= X, then w |= Y . We write
w |= P in this case. A clause Y is a logical consequence of P if every model
of P satisfies Y . We write cons(P) for the set of all clauses which are logical
consequences of P .

Note that the condition w |= P is strictly stronger than w |= cons(P). For
an example, consider the domain {p, q,⊥} defined by ⊥ < p and ⊥ < q, and the
program P consisting of the single rule {p} ← {q}. Then cons(P) contains only
tautologies, and thus is modelled by the element q. Yet q is not a model for P .

In [1], a notion of default negation was added to the logic programming frame-
work presented above. The extension is close in spirit to mainstream develop-
ments concerning knowledge representation and reasoning with nonmonotonic
logics. It will serve as the base for our query language.

Since the following definition introduces a nonmonotonic negation operator
∼ into the logic, we wish to emphasize that the negation · from Example 1 is
not a special symbol of our logic but merely a syntactical feature to denote the
elements of one particular example domain. Similar situations are known in FCA:
in some formal contexts, every attribute has a “negated” attribute that relates
to exactly the opposite objects, but FCA in general does not define negation.
Analogously, by choosing appropriate domains, Logic RZ can be used to model
common monotonic negations. In contrast, the semantic extension introduced
next cannot be accounted for in this way.

Definition 3. Consider a coherent algebraic domain D. An extended rule is
a rule of the form H ← X,∼Y , where H, X, and Y are clauses over D. An
extended rule is trivially extended if Y = {}, and we may omit Y in this case.
We call the tuple (X, Y) the body of the rule and H the head of the rule. An
(extended disjunctive) program is a set of extended rules.

Querying formal contexts with answer set programs 5

Informally, we read an extended rule H ← X,∼Y as follows: if X holds,
and Y does not, then H shall hold. As usual in logic programming, the formal
semantics of ∼ is defined by specifying the semantics of logic programs in which
∼ is contained. But in contrast to classical negation, semantics is not defined by
specifying the effect of ∼ on logical interpretations, e.g. by using truth tables.
The reason is that we want to enrich our reasoning paradigm with nonmonotonic
features, which are characterized by the fact that previously drawn conclusions
might become invalid when adding additional knowledge (i.e. program rules).
But such semantics clearly cannot be defined locally by induction on the struc-
ture of logical formulae – the whole program must be taken into account for
determining logical meaning. We consider the following formal definition, akin
to the answer set semantics that will be introduced later on in this section.

Definition 4. Consider a coherent algebraic domain D, an element w ∈ D,
and an extended disjunctive program P . We define P/w to be the (non-extended)
program obtained by applying the following two transformations:

1. Replace each body (X, Y) of a rule by X whenever w 6|= Y .
2. Delete all rules with a body (X, Y) for which w |= Y .

An element w ∈ D is an answer model of P if it satisfies w |= cons(P/w). It is
a min-answer model of P if it is minimal among all v satisfying v |= cons(P/w).

Note that every min-answer model is an answer model. We do not require
answer models w to satisfy the rules of the program P/w. However, one can
show the following lemma.

Lemma 1. Consider a coherent algebraic domain D and a disjunctive program
(i.e. without default negation) P over D. If w ∈ D is minimal among all elements
v with property v |= cons(P), then w |= P .

Proof. This was shown in [2, Lemma 5.3]. ut

The proof of the following statement refers to [2, Lemma 5.1] which uses
Zorn’s Lemma (or, equivalently, the Axiom of Choice).

Lemma 2. Consider a coherent algebraic domain D, and a disjunctive program
P over D. If w ∈ D is such that w |= cons(P), then there is an element w′ v w
such that w′ |= P and which is minimal among all v that satisfy v |= cons(P).

Proof. By [2], cons(P) is a logically closed theory. By [2, Proof of Theorem
3.2], the set M of all models of cons(P) is compact and upwards closed. By
[2, Lemma 5.1] we have that M is the upper closure of its finite set C(M) of
minimal compact elements. Consequently, for any w |= cons(P) we have w ∈M
and there is a w′ ∈ C(M) with the desired properties. ut

Intuitively, the above lemma enables us to conclude that there is a minimal
model below any model of the program P . The rationale behind the definition of

6 Hitzler and Krötzsch

min-answer model is that it captures the notion of answer set as used in answer
set programming which we will introduce next.

Answer set programming (ASP) is a reasoning paradigm in artificial intel-
ligence which was devised in order to capture some aspects of commonsense
reasoning. We now briefly review the basic concepts of ASP so that we can make
the relationship to nonmonotonic logic programming in the Logic RZ explicit in
Section 5.

ASP is based on the observation that humans tend to jump to conclusions
in real-life situations, and on the idea that this imprecise reasoning mechanism
(amongst other things) allows us to deal with the world effectively. Formally,
jumping to conclusions can be studied by investigating supraclassical logics, see
[8], where supraclassicality means, roughly speaking, that under such a logic
more conclusions can be drawn from a set of axioms (or knowledge base) than
could be drawn using classical (e.g. propositional or first-order) logic. Answer set
programming, as well as the related default logic [9], is also nonmonotonic, in
the sense that a larger knowledge base might yield a smaller set of conclusions.

We next describe the notion of answer set for extended disjunctive logic
programs, as proposed in [10]. It forms the heart of answer set programming
systems like dlv2 or smodels3 [11, 12], which have become a standard paradigm
in artificial intelligence.

Let V denote a countably infinite set of propositional variables. An ASP-rule
is an expression of the form

L1, . . . , Ln ← Ln+1, . . . , Lm,∼Lm+1, . . . ,∼Lk,

where each Li is a literal, i.e. either of the form p or ¬p for some propositional
variable p ∈ V. Given such an ASP-rule r, we set Head(r) = {L1, . . . , Ln},
Pos(r) = {Ln+1, . . . , Lm}, and Neg(r) = {Lm+1, . . . , Lk}.

In order to describe the answer set semantics, or stable model semantics, for
extended disjunctive programs, we first consider programs without ∼.

Thus, let P denote an extended disjunctive logic program in which Neg(r)
is empty for each ASP-rule r ∈ P . A set W ⊆ V± = V ∪ ¬V is said to be
closed by rules in P if, for every r ∈ P such that Pos(r) ⊆ W , we have that
Head(r) ∩W 6= ∅. W is called an answer set for P if it is a minimal subset of
V± such that the following two conditions are satisfied.

1. If W contains complementary literals, then W = V±.
2. W is closed by rules in P .

We denote the set of answer sets of P by α(P). Now suppose that P is an
extended disjunctive logic program that may contain ∼. For a set W ⊆ V±,
consider the program P/W defined as follows.

1. If r ∈ P is such that Neg(r)∩W is not empty, then we remove r i.e. r /∈ P/W .
2 http://www.dbai.tuwien.ac.at/proj/dlv/
3 http://www.tcs.hut.fi/Software/smodels/

Querying formal contexts with answer set programs 7

object(1). object(2). ...
attribute(a). attribute(b). ...
incidence(1,b). ...

in_extent(G) :- object(G), not outof_ext(G).
outof_ext(G) :- object(G), attribute(M), in_intent(M), not incidence(G,M).

in_intent(M) :- attribute(M), not outof_int(M).
outof_int(M) :- object(G), attribute(M), in_extent(G), not incidence(G,M).

Fig. 1. Computing formal concepts using answer set programming.

2. If r ∈ P is such that Neg(r) ∩W is empty, then the ASP-rule r′ belongs
to P/W , where r′ is defined by Head(r′) = Head(r), Pos(r′) = Pos(r) and
Neg(r′) = ∅.

The program transformation (P,W) 7→ P/W is called the Gelfond-Lifschitz
transformation of P with respect to W .

It is clear that the program P/W does not contain ∼ and therefore α(P/W)
is defined. We say that W is an answer set or stable model of P if W ∈ α(P/W).
So, answer sets of P are fixed points of the operator GLP introduced by Gelfond
and Lifschitz in [10], where GLP (W) = α(P/W).4 We note that the operator
GLP is in general not monotonic, and call it the Gelfond-Lifschitz operator of P .

Example 3. We illustrate answer set programming by means of a program due to
Carlos Damasio [13] given in Fig. 1. It computes all formal concepts for a given
formal context. The program consists of declarations of the objects, attributes,
and incidence relation in the form of facts, hinted at in the first three lines of
Fig. 1. The remaining four lines suffice to describe the problem – run in an
answer set programming system, the program will deliver several answer sets,
which coincide with the formal concepts of the given context if restricted to
the predicates in_extent and in_intent. Note that “not” stands for default
negation ∼, and “:-” stands for ←. Variables are written uppercase.

We follow common practice in allowing variables to occur in programs, but
we need to explain how the syntax of Fig. 1 relates to the answer set semantics
given earlier. This is done by grounding the program by forming all ground
instances of the rules by making all possible substitutions of variables by the
constants occurring in the program. Variable bindings within a rule have to be
respected. For example, the first rule

in_extent(G) :- object(G), not outof_ext(G).

has the ASP-rules
4 GLP being a multi-valued map, we speak of W as a fixed point of GLP if W ∈

GLP (W).

8 Hitzler and Krötzsch

in_extent(1) :- object(1), not outof_ext(1). and
in_extent(b) :- object(b), not outof_ext(b).

as two examples of ground instances. The resulting ground atoms, i.e. atomic
formulae such as object(b) and outof_ext(1), can then be understood as
propositional variables, and the semantics given earlier can be derived.

It was shown in [1] that extended disjunctive programs over the domain TV

from Example 1 can be closely related to classical answer set programming over
a set of ground atoms V. We will generalize this result in Theorem 1 below,
where we incorporate information from formal contexts as well.

4 Querying formal contexts

In this section, we integrate hierarchical background knowledge specified by a
formal context with the generalized programming paradigm for the Logic RZ.
The result can be considered as a query language for formal contexts.

Definition 5. Let K be a finite formal context with concept lattice B(K), and let
TV be the domain from Example 1. A query over K is any extended disjunctive
program over the domain B(K)× TV .

The fact that B(K)×TV is a domain follows since both factors of this product
are domains as well. That B(K) is a domain is ensured by restricting the above
definition to finite contexts. Concepts of K can be viewed as conjunctions of
attributes of K (or, similarly, as conjunctions of objects), thus allowing for a
straightforward intuitive reading of the rules of a query. When formulating a
rule, however, the restriction to concepts can be unwanted, and one might prefer
to state arbitrary conjunctions over attributes and objects. To this end, we now
develop a more convenient concrete syntax for queries.

Definition 6. Given a context K = (G, M, I), a literal over K is either an
element of G∪M , or a formula of the form p(t1, . . . , tn) or ¬p(t1, . . . , tn), where
p is an n-ary predicate symbol and t1, . . . , tn are terms over some first-order
language. A rule over K then is of the form

L1, . . . , Ln ← Ln+1, . . . , Lm,∼Lm+1, . . . ,∼Lk,

where each of the Li is a literal over K. A simplified query for K is a set of rules
over K.

The intention is that rules over a context allow for an intuitive reading which
is similar to that for classical ASP-rules, and that finite sets of rules unambigu-
ously represent queries over the given context. We consider rules with variables
as a short-hand notation for the (possibly infinite) set of all ground instances
(with respect to the considered first-order signature), and thus can restrict our
attention to rules that do not contain first-order variables.

Querying formal contexts with answer set programs 9

When relating Definition 6 to Definition 5, we have to be aware that both def-
initions are somewhat implicit about the considered logical languages. Namely,
the notion of a simplified query depends on the chosen first order language, and,
similarly, queries employ the domain TV that depends on choosing some con-
crete set of propositional variables V. Given standard cardinality constraints,
the choice of these invariants is not relevant for our treatment, but notation is
greatly simplified by assuming that V is always equal to the set of ground atoms
(i.e. atomic logic formulae without variables) over the chosen language. Thus,
we can also view ground atoms as elements of TV mapping exactly the specified
element of V to true, and leaving everything else undetermined.

Moreover, note that both B(G, M, I) and TV have least elements (M ′,M ′′)
and ⊥, respectively. We exploit this to denote elements of B(G, M, I) × TV

by elements of G ∪ M ∪ V ∪ V. Namely, each element o ∈ G denotes the el-
ement (({o}′′, {o}′),⊥), a ∈ M denotes (({a}′, {a}′′),⊥), and p ∈ V ∪ V de-
notes ((M ′,M ′′), p). This abbreviation is helpful since the atomic elements are
supremum-dense in B(G, M, I) × TV and thus can be used to specify all other
elements.

Definition 7. Consider a context K = (G, M, I), and a rule over K of the form

L1, . . . , Ln ← Ln+1, . . . , Lm,∼Lm+1, . . . ,∼Lk.

The associated extended disjunctive rule over B(K)× TV is defined as

{L1, . . . , Ln} ←
⊔
{Ln+1, . . . , Lm},∼{Lm+1, . . . , Lk}.

Given a simplified query P , its associated query P̂ is obtained as the set of rules
associated to the rules of P in this sense.

Conversely, it is also possible to find an appropriate simplified query for
arbitrary queries. The problem for this transformation is that the simplified
syntax does not permit disjunctions in the bodies of rules, and generally restricts
to atomic expressions. It is well-known, however, that disjunctions in bodies
do usually not increase expressiveness of a rule language. Indeed, consider the
extended disjunctive rule

{l1, . . . , ln} ← {ln+1, . . . , lm},∼{lm+1, . . . , lk},

where li are elements of B(K) × TV as in Definition 5. Using a simple form of
the so-called Lloyd-Topor transformation, we can rewrite this rule into the set
of rules

{{l1, . . . , ln} ← {lj},∼{lm+1, . . . , lk} | j ∈ {n + 1, . . . ,m}} .

It is straightforward to show that this transformation preserves answer models
and min-answer models, and we omit the details.

10 Hitzler and Krötzsch

Similarly, it is possible to treat heads {l1, . . . , ln}, where the li are not
necessarily literals. Indeed, each li can be written as li =

⊔
Ai, where Ai =

{ai1, . . . , aini
} is a finite set of literals, and a rule of the form

{l1, . . . , ln} ← {l},∼{lm+1, . . . , lk}

can thus be transformed into the set of rules

{{e1, . . . , en} ← {lj},∼{lm+1, . . . , lk} | ei ∈ Ai} .

Intuitively, this transformation is obtained by bringing the head into conjunctive
normal form (using a distributivity law) and subsequent splitting of conjunctions
into different clause heads. This constitutes another Lloyd-Topor transformation,
and it is again straightforward – but also quite tedious – to show that the
transformation preserves answer models and min-answer models.

Similar techniques could be applied to transform complex expressions in the
default negated part of the body. Therefore, we can restrict our subsequent
considerations to simplified queries without loss of generality.

5 Practical evaluation of queries

Based on the close relationship to answer set programming discussed in Section 3,
we now present a way to evaluate queries within standard logic programming sys-
tems. This has the huge advantage that we are able to employ highly optimized
state of the art systems for our reasoning tasks. Furthermore, the connection to
standard answer set programming creates further possibilities to combine con-
textual knowledge with other data sources that have been integrated into answer
set programming paradigms.

Our goal is to reduce queries to (classical) answer set programs. For this
it is necessary to translate both the rules of the program and the data of the
underlying formal context into the standard paradigm. On a syntactic level, we
already established a close correspondence based on the notion of a simplified
query. We now show how to take this syntactic similarity to a semantic level.

Definition 8. Given a simplified query P for a context K = (G, M, I), consider
the syntactic representation of P as an extended disjunctive logic program over
the set of variables G∪M ∪V. Furthermore, define a program ASP(K) over this
set of variables to consist of the union of

1. all rules of the form o← a1, . . . , an, with a1,. . . ,an ∈M , o ∈ {a1, . . . , an}′,
2. all rules of the form a← o1, . . . , on, with o1,. . . ,on ∈ G, a ∈ {o1, . . . , on}′.

By ASP(P), we denote the extended disjunctive logic program P ∪ ASP(K) that
is thus associated with the simplified query P .

Obviously, ASP(K) (and therefore also ASP(P)) will in general contain re-
dundancies, which could be eliminated if desired by using stem base techniques

Querying formal contexts with answer set programs 11

(see [6]). We will not discuss this optimization in detail as it is not necessary for
our exhibition.

On the semantic level of min-answer models and answer sets, the relationship
between queries and logic programs is described by the following function.

Definition 9. Consider the domain TV and a context K = (G, M, I). A map-
ping ι from elements of B(K)×TV to subsets of G∪M ∪V± is defined by setting
ι(w) = {p | w |= p}.

Note that the above definition is only meaningful when employing our con-
vention of using elements p ∈ G ∪M ∪ V± to denote (not necessarily atomic)
elements of B(K) × TV , as discussed in the previous section. This relationship
need not be injective, but elements from V± and G ∪M are never associated
with the same element of B(K)×TV , and this suffices to eliminate any confusion
in our following considerations.

Lemma 3. Consider a simplified query P for a context K with associated query
P̂ . For any element w ∈ B(K) × TV , we find that ASP(P)/ι(w) = P/ι(w) ∪
ASP(K).

Furthermore, an ASP-rule L1, . . . , Ln ← Ln+1, . . . , Lm is in P/ι(w) iff the
corresponding rule {L1, . . . , Ln} ←

⊔
{Ln+1, . . . , Lm} is in P̂ /w.

Proof. The first part of the claim is immediate, since there are no default negated
literals in ASP(K). For the second part, note that any rule in either P/ι(w) or
P̂ /w stems from a rule of the form L1, . . . , Ln ← Ln+1, . . . , Lm,∼Lm+1, . . . ,∼Lk

in P . To finish the proof, we just have to observe that w |= {Lm+1, . . . , Lk} iff
ι(w) |= Li for some i = m + 1, . . . , k. ut

Restricting to non-extended disjunctive programs only, the next lemma es-
tablishes the basis for the main result of this section.

Lemma 4. Consider a simplified query P over some context K = (G, M, I),
such that no default negation appears in P . If w ∈ B(K) × TV is such that
w |= P̂ , then ι(w) is closed under rules of P ∪ ASP(K).

Conversely, assume there is a consistent set W ⊂ (G∪M ∪V)± closed under
rules of P ∪ ASP(K). Then W ⊇ ι(w) for some element w ∈ B(K) × TV with
property w |= P̂ . In particular, if W is minimal among all sets closed under said
rules, then W is equal to ι(w).

Proof. For the first part of the claim, let w |= P̂ be as above, and consider an
ASP-rule r ∈ P ∪ ASP(K) given by L1, . . . , Ln ← Ln+1, . . . , Lm. First consider
the case r ∈ P . By Definition 7, {L1, . . . , Ln} ←

⊔
{Ln+1, . . . , Lm} is in P̂ . If

Ln+1, . . . , Lm ∈ ι(w), then w |= Li, i = n + 1, . . . ,m by the definition of ι.
Hence w |=

⊔
{Ln+1, . . . , Lm} and thus w |= Lj for some j ∈ {1, . . . , n}. But

then Lj ∈ ι(w) and so ι(w) satisfies the rule r.
On the other hand, that ι(w) satisfies any ASP-rule r ∈ ASP(K) is obvious

from the fact that ι(w) ∩ G is an extent with corresponding intent ι(w) ∩M .
This finishes the proof that ι(w) is closed under rules of ASP(P)/ι(w).

12 Hitzler and Krötzsch

For the second part of the claim, consider a set W as in the assumption.
First note that elements of ¬G ∪ ¬M do not occur in the rules of P ∪ ASP(K).
Consequently, whenever W is closed under rules of P ∪ ASP(K), we find that
V = W ∩ (G ∪M ∪ V±) has this property as well.

Now consider sets O = V ∩ G and A = V ∩M . We claim that (O,A) is a
concept of K, i.e. O′ = A. Since V is closed under ASP(K), whenever a ∈ O′ for
some a ∈M , we find a ∈W , and hence A ⊇ O′. Analogously, we derive O ⊇ A′.
Using standard facts about concept closure (·)′ [6], we obtain O′′ ⊆ A′ ⊂ O and
A′′ ⊆ O′ ⊂ A which establishes the claim.

Given that V ∩ (G ∪M)± is the (disjoint) union of the extent and intent of
a concept, it is obvious that V = ι(w) for some w ∈ B(K)×TV . Here we use the
assumed consistency of W and V to ensure that the TV -part of V can indeed be
expressed by an appropriate w.

We still have to show that w |= P̂ . For any rule {L1, . . . , Ln} ←
⊔
{Ln+1, . . . ,

Lm} in P̂ , there is an ASP-rule L1, . . . , Ln ← Ln+1, . . . , Lm in P . By the def-
inition of ι, it is clear that ι(w) = V models this ASP-rule iff w models the
corresponding rule, which establishes the claim, since V models all ASP-rules.

ut

Theorem 1. Consider a simplified query P with associated query P̂ and pro-
gram ASP(P). If P̂ has any min-answer models, then the function ι from Defini-
tion 9 is a bijection between min-answer models of P and answer sets of ASP(P).

Proof. Consider an answer set W of ASP(P) such that W 6= (G ∪M ∪ V)±.
Considering P/W as a simplified query, we can apply Lemma 4, to find some
element w |= P̂/W such that W = ι(w). By Lemma 3, an ASP-rule is in P/W

iff a corresponding rule is in P̂ /w, and we conclude w |= P̂ /w. We claim that
w additionally is a min-answer model. Indeed, by Lemma 2, there is an element
w′ v w such that w′ |= P̂ /w and which is minimal among all v |= cons(P). For
a contradiction, suppose that w 6= w′, i.e. w is not a min-answer model. Using
Lemmas 3 and 4, we find that w′ |= P̂ /w implies that ι(w′) is closed under rules
of P/ι(w). Closure of ι(w′) under rules of ASP(K) is immediate since the first
component of w′ is required to be a concept. Thus, we obtain a model ι(w′)
for ASP(P) which is strictly smaller than ι(w). This contradicts the assumed
minimality of ι(w) = W , so that w must be a min-answer model.

Conversely, we show that ι(w) is an answer set of ASP(P) whenever w is
a min-answer model of P̂ . Combining Lemmas 3 and 4, we see that ι(w) is
closed under rules of ASP(P)/ι(w). For a contradiction, suppose that ι(w) is
not minimal, i.e. there is some model V ⊆ W that is also closed under rules
of ASP(P). Then, by Lemma 4, we have V ⊇ ι(v) for some v for which v |=
P̂ /w. Clearly, ι(v) ⊆ V ⊆ W implies v @ w, thus contradicting our minimality
assumption on w. ut

The above result can be compared to the findings in [1], where programs
over TV were related to answer set programs. The corresponding result can be
obtained from Theorem 1 by restricting to the empty context (∅, ∅, ∅).

Querying formal contexts with answer set programs 13

6 Conclusions and further work

We have shown how artificial intelligent commonsense reasoning in the form
of answer set programming can be merged with conceptual knowledge in the
sense of formal concept analysis. We have utilized this in order to develop a
commonsense query answering system for formal contexts, which features the
full strength of disjunctive answer set programming.

Based on our results, it is straightforward to implement this e.g. on top of the
dlv system5 [11], which has recently been supplemented to support extensions
like ours in a hybrid fashion [14].

The dlv system also provides modules for interfacing with conceptual knowl-
edge in other paradigms like OWL [15] or RDF [16], resulting in a hybrid rea-
soning system. These features become available for us by way of dlv and thus
allow for an integrated querying and reasoning paradigm over heterogeneous
knowledge. This could also be further enhanced with query-based multicontext
browsing capabilities in the sense of [17].

Finally, let us remark that our work sheds some light on recently discussed
issues concerning the interplay between conceptual knowledge representation
and rule-based reasoning.6 Indeed, our approach realizes a strong integration
between paradigms, with the disadvantage that it is restricted to hierarchical
conceptual knowledge in the sense of formal concept analysis. It may nevertheless
be a foundation for further investigations into the topic from an order-theoretic
perspective.

References

1. Hitzler, P.: Default reasoning over domains and concept hierarchies. In Biundo,
S., Frühwirth, T., Palm, G., eds.: Proceedings of the 27th German conference on
Artificial Intelligence, KI’2004, Ulm, Germany, September 2004. Volume 3238 of
Lecture Notes in Artificial Intelligence., Springer, Berlin (2004) 351–365

2. Rounds, W.C., Zhang, G.Q.: Clausal logic and logic programming in algebraic
domains. Information and Computation 171 (2001) 156–182

3. Abramsky, S., Jung, A.: Domain theory. In Abramsky, S., Gabbay, D., Maibaum,
T.S., eds.: Handbook of Logic in Computer Science. Volume 3. Clarendon, Oxford
(1994)

4. Plotkin, G.: T ω as a universal domain. Journal of Computer and System Sciences
17 (1978) 209–236

5. Fitting, M.: A Kripke-Kleene-semantics for general logic programs. The Journal
of Logic Programming 2 (1985) 295–312

6. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations.
Springer, Berlin (1999)

7. Hitzler, P., Wendt, M.: Formal concept analysis and resolution in algebraic do-
mains. In de Moor, A., Ganter, B., eds.: Using Conceptual Structures – Contribu-
tions to ICCS 2003, Shaker Verlag, Aachen (2003) 157–170

5 http://www.dbai.tuwien.ac.at/proj/dlv/
6 See e.g. the work of the W3C Rule Interchange Format working group at http:
//www.w3.org/2005/rules/wg.html.

14 Hitzler and Krötzsch

8. Makinson, D.: Bridges between classical and nonmonotonic logic. Logic Journal
of the IGPL 11 (2003) 69–96

9. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1980) 81–132
10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive

databases. New Generation Computing 9 (1991) 365–385
11. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for

nonmonotonic reasoning. In Dix, J., Furbach, U., Nerode, A., eds.: Proceedings
of the 4th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’97). Volume 1265 of Lecture Notes in Artificial Intelligence.,
Springer, Berlin (1997)

12. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable
model semantics. Artificial Intelligence 138 (2002) 181–234

13. Damasio, C.: Personal communication (2004)
14. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-

order reasoning and external evaluations in answer set programming. In Kaelbling,
L.P., Saffiotti, A., eds.: Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI-05). (2005)

15. Smith, M.K., McGuinness, D.L., Welty, C.: OWL Web Ontology Language Guide.
W3C Recommendation 10 February 2004 (2004) available at http://www.w3.org/
TR/owl-guide/.

16. Manola, F., Miller, E.: Resource Description Framework (RDF) Primer. W3C
Recommendation 10 February 2004 (2004) available at http://www.w3.org/TR/
rdf-primer/.

17. Tane, J.: Using a query-based multicontext for knowledge base browsing. In:
Formal Concept Analysis, Third International Conf., ICFCA 2005-Supplementary
Volume, Lens, France, IUT de Lens, Universite d’Artois (2005) 62–78

	Querying Formal Contexts with Answer Set Programs
	Repository Citation

	tmp.1406751361.pdf.N1Fk5

