3 research outputs found

    PARP1 gene variation and microglial activity on [11C]PBR28 PET in older adults at risk for Alzheimer's disease

    Get PDF
    Increasing evidence suggests that inflammation is one pathophysio-logical mechanism in Alzheimer's disease (AD). Recent studies have identified an association between the poly (ADP-ribose) polymerase 1 (PARP1) gene and AD. This gene encodes a protein that is involved in many biological functions, including DNA repair and chromatin remodeling, and is a mediator of inflammation. Therefore, we performed a targeted genetic association analysis to investigate the relationship between the PARP1 polymorphisms and brain micro-glial activity as indexed by [11C]PBR28 positron emission tomography (PET). Participants were 26 non-Hispanic Caucasians in the Indiana Memory and Aging Study (IMAS). PET data were intensity-normalized by injected dose/total body weight. Average PBR standardized uptake values (SUV) from 6 bilateral regions of interest (thalamus, frontal, parietal, temporal, and cingulate cortices, and whole brain gray matter) were used as endophenotypes. Single nucleotide polymorphisms (SNPs) with 20% minor allele frequency that were within +/− 20 kb of the PARP1 gene were included in the analyses. Gene-level association analyses were performed using a dominant genetic model with translocator protein (18-kDa) (TSPO) genotype, age at PET scan, and gender as covariates. Analyses were performed with and without APOE ε4 status as a covariate. Associations with PBR SUVs from thalamus and cingulate were significant at corrected p<0.014 and <0.065, respectively. Subsequent multi-marker analysis with cingulate PBR SUV showed that individuals with the “C” allele at rs6677172 and “A” allele at rs61835377 had higher PBR SUV than individuals without these alleles (corrected P<0.03), and individuals with the “G” allele at rs6677172 and “G” allele at rs61835377 displayed the opposite trend (corrected P<0.065). A previous study with the same cohort showed an inverse relationship between PBR SUV and brain atrophy at a follow-up visit, suggesting possible protective effect of microglial activity against cortical atrophy. Interestingly, all 6 AD and 2 of 3 LMCI participants in the current analysis had one or more copies of the “GG” allele combination, associated with lower cingulate PBR SUV, suggesting that this gene variant warrants further investigation

    Advances in imaging to support the development of novel therapies for multiple sclerosis.

    No full text
    Multiple sclerosis (MS) is a common neurological disease in North America and Europe. Although most patients develop major locomotor disability over the course of 15-20 years, in approximately one-third of patients the long-term course is favorable, with minimal disability. Although current disease-modifying treatments reduce the relapse rate, their long-term effects are uncertain. MS treatment trials are challenging because of the variable clinical course and typically slow evolution of the disease. Magnetic resonance imaging (MRI) is sensitive in monitoring MS pathology and facilitates evaluation of potential new treatments. MRI measurements of lesion activity have identified new immunomodulatory treatments for preventing relapse. Quantitative measurements of tissue volume and structural integrity, capable of detecting neuroprotection and repair, should facilitate new treatments designed to prevent irreversible disability. Higher-field MR scanners and new positron emission tomography (PET) radioligands are providing new insights into cellular and pathophysiological abnormalities, and should be valuable in future therapeutic trials. Retinal axonal loss measured using optical coherence tomography (OCT) can assess acute neuroprotection in optic neuritis
    corecore