58 research outputs found

    Science Communication Demands a Critical Approach That Centers Inclusion, Equity, and Intersectionality

    Get PDF
    We live in an era of abundant scientific information, yet access to information and to opportunities for substantive public engagement with the processes and outcomes of science are still inequitably distributed. Even with increasing interest in science communication and public engagement with science, historically marginalized and minoritized individuals and communities are largely overlooked and undervalued in these efforts. To address this gap, this paper aims to define inclusive science communication and clarify and amplify the field. We present inclusive science communication as one path forward to redress the systemic problems of inequitable access to and engagement with STEMM (science, technology, engineering, mathematics, and medicine). We describe the first national Inclusive Science Communication (InclusiveSciComm) Symposium held in the U.S. Based on the experience of organizing the symposium, we discuss recommendations for other convenings to help build a community of practice for inclusive science communication. In both research and practice, we advocate for more experimentation to help make inclusive science communication the future of science communication writ large, in order to engage diverse publics in their multiple ways of knowing and expand a sense of belonging in STEMM

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    History and mechanism of eruption of soda-rhyolite and alkali basalt, Socorro Island, Mexico

    No full text
    Socorro Island is the summit of a large volcanic mountain located on the Clarion Fracture Zone in the east Pacific. Two major periods of volcanic activity can be recognized on the island. The first (pre-caldera) period was characterized by eruptions of olivine-poor alkali basalt, followed by quiet effusion of soda rhyolite including varieties transitional to pantellerite. This period of activity terminated with the formation of a caldera by collapse. A relatively prolonged period of quiescence ended with rifting and down-faulting of the western side of the island along a north-south fracture system, accompanied by violently explosive eruptions of soda rhyolite which built a large tephra cone over the position of the old caldera. The locus of eruptive activity moved outward and downward along tension fractures and old tectonic rifts as the central vents became blocked by domes of dense obsidian. Low level eruptions of viscous soda rhyolite including pantellerite commenced without preliminary explosive eruptions and built numerous endogenous and exogenous domes. Basaltic eruptions were rare and confined to low-level vents. During the growth of the volcano the direction of active rifting appears to have changed from east-west to northwest-southeast to north-south. Little is known of the submarine portion of the volcano, but the topography seems to reflect the three directions of rifting. The oldest submarine lavas are assumed to be basaltic and are probably of late Tertiary age. The eruptive history of Socorro suggests that the underlying magma column became stratified toward the end of the active period
    corecore