711 research outputs found

    Influence of the Coulomb Interaction on the Chemical Equilibrium of Nuclear Systems at Break-Up

    Get PDF
    The importance of a Coulomb correction to the formalism proposed by Albergo et al. for determining the temperatures of nuclear systems at break-up and the ensities of free nucleon gases is discussed. While the proposed correction has no effect on the temperatures extracted based on double isotope ratios, it becomes non-negligible when such temperatures or densities of free nucleon gases are extracted based on multiplicities of heavier fragments of different atomic numbers

    Liquid-Gas Coexistence and Critical Behavior in Boxed Pseudo-Fermi Matter

    Get PDF
    A schematic model is presented that allows one to study the behavior of interacting pseudo-Fermi matter locked in a thermostatic box. As a function of the box volume and temperature, the matter is seen to show all of the familiar charactersitics of a Van der Waals gas, which include the coexistence of two phases under certain circumstances and the presence of a critical point

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    The Role of Surface Entropy in Statistical Emission of Massive Fragments from Equilibrated Nuclear Systems

    Full text link
    Statistical fragment emission from excited nuclear systems is studied within the framework of a schematic Fermi-gas model combined with Weisskopf's detailed balance approach. The formalism considers thermal expansion of finite nuclear systems and pays special attention to the role of the diffuse surface region in the decay of hot equilibrated systems. It is found that with increasing excitation energy, effects of surface entropy lead to a systematic and significant reduction of effective emission barriers for fragments and, eventually, to the vanishing of these barriers. The formalism provides a natural explanation for the occurrence of negative nuclear heat capacities reported in the literature. It also accounts for the observed linearity of pseudo-Arrhenius plots of the logarithm of the fragment emission probability {\it versus} the inverse square-root of the excitation energy, but does not predict true Arrhenius behavior of these emission probabilities

    Noncommutative waves have infinite propagation speed

    Full text link
    We prove the existence of global solutions to the Cauchy problem for noncommutative nonlinear wave equations in arbitrary even spatial dimensions where the noncommutativity is only in the spatial directions. We find that for existence there are no conditions on the degree of the nonlinearity provided the potential is positive. We furthermore prove that nonlinear noncommutative waves have infinite propagation speed, i.e., if the initial conditions at time 0 have a compact support then for any positive time the support of the solution can be arbitrarily large.Comment: 15 pages, references adde

    THE HIGGS-YUKAWA MODEL IN CURVED SPACETIME

    Get PDF
    The Higgs-Yukawa model in curved spacetime (renormalizable in the usual sense) is considered near the critical point, employing the 1/N1/N--expansion and renormalization group techniques. By making use of the equivalence of this model with the standard NJL model, the effective potential in the linear curvature approach is calculated and the dynamically generated fermionic mass is found. A numerical study of chiral symmetry breaking by curvature effects is presented.Comment: LaTeX, 9 pages, 1 uu-figur

    Self Consistent 1/Nc1/N_c Expansion In The Presence Of Electroweak Interactions

    Full text link
    In the conventional approach to the 1/Nc1/N_c expansion, electroweak interactions are switched off and large NcN_c QCD is treated in isolation. We study the self-consistency of taking the large NcN_c limit in the presence of electroweak interaction. If the electroweak coupling constants are held constant, the large NcN_c counting rules are violated by processes involving internal photon or weak boson lines. Anomaly cancellations, however, fix the ratio of electric charges of different fermions. This allows a self-consistent way to scale down the electronic charge ee in the large NcN_c limit and hence restoring the validity of the large NcN_c counting rules.Comment: 9 pages in REVTeX, no figure

    Mass Parameterizations and Predictions of Isotopic Observables

    Full text link
    We discuss the accuracy of mass models for extrapolating to very asymmetric nuclei and the impact of such extrapolations on the predictions of isotopic observables in multifragmentation. We obtain improved mass predictions by incorporating measured masses and extrapolating to unmeasured masses with a mass formula that includes surface symmetry and Coulomb terms. We find that using accurate masses has a significant impact on the predicted isotopic observables.Comment: 12 pages, 4 figure

    Statistical Interpretation of Joint Multiplicity Distributions of Neutrons and Charged Particles

    Full text link
    Experimental joint multiplicity distributions of neutrons and charged particles emitted in complex nuclear reactions provide an important test of theoretical models. The method is applied to test three different theoretical models of nuclear multi-fragmentation, two of which fail the test. The measurement of neutrons is decisive in distinguishing between the Berlin and Copenhagen models of nuclear multi-fragmentation and challenges the interpretation of pseudo- Arrhenius plots. Statistical-model evaporation calculations with GEMINI give a good reproduction first and second moments of the experimental multiplicity correlations.Comment: 12 pages, 3 figures Added GEMINI calculations of multiplicity correlations Added brief discussion of how neutron emission is treated in MMM
    • …
    corecore