13,031 research outputs found

    Triaxially deformed relativistic point-coupling model for Λ\Lambda hypernuclei: a quantitative analysis of hyperon impurity effect on nuclear collective properties

    Full text link
    The impurity effect of hyperon on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of E2E2 transition strength in low-lying states of hypernucleus Λ7^{7}_\LambdaLi. Many more data on low-lying states of Λ\Lambda hypernuclei will be measured soon for sdsd-shell nuclei, providing good opportunities to study the Λ\Lambda impurity effect on nuclear low-energy excitations. We carry out a quantitative analysis of Λ\Lambda hyperon impurity effect on the low-lying states of sdsd-shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the Λ\Lambda hyperon is injected into the lowest positive-parity (Λs\Lambda_s) and negative-parity (Λp\Lambda_p) states. We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the Λ\Lambda binding energies of hypernuclei as well as the potential energy surfaces (PESs) in (β,γ)(\beta, \gamma) deformation plane. We also calculate the PESs for the Λ\Lambda hypernuclei with good quantum numbers using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking Λ25,27^{25,27}_{\Lambda}Mg and Λ31^{31}_{\Lambda}Si as examples, we analyse the impurity effects of Λs\Lambda_s and Λp\Lambda_p on the low-lying states of the core nuclei...Comment: 15 pages with 18 figures and 1 table (version to be published in Physical Review C

    Acceleration and vacuum temperature

    Full text link
    The quantum fluctuations of an "accelerated" vacuum state, that is vacuum fluctuations in the presence of a constant electromagnetic field, can be described by the temperature \TEH. Considering \TEH for the gyromagnetic factor g=1g=1 we show that \TEH(g=1)=\THU, where \THU is the Unruh temperature experienced by an accelerated observer. We conjecture that both particle production and nonlinear field effects inherent in the Unruh accelerated observer case are described by the case g=1g=1 QED of strong fields. We present rates of particle production for g=0,1,2g=0,1,2 and show that the case g=1g=1 is experimentally distinguishable from g=0,2g=0,2. Therefore, either accelerated observers are distinguishable from accelerated vacuum or there is unexpected modification of the theoretical framework.Comment: 4 pages, 1 figure; expanded discussion of experimental observables, added references, version appearing in Phys Rev

    The Fermi level effect in III-V intermixing: The final nail in the coffin?

    Get PDF
    Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 81, 2179 (1997) and may be found at

    On Size and Shape of the Average Meson Fields in the Semibosonized Nambu & Jona-Lasinio Model

    Full text link
    We consider a two-flavor Nambu \& Jona-Lasinio model in Hartree approximation involving scalar-isoscalar and pseudoscalar-isovector quark-quark interactions. Average meson fields are defined by minimizing the effective Euklidean action. The fermionic part of the action, which contains the full Dirac sea, is regularized within Schwinger's proper-time scheme. The meson fields are restricted to the chiral circle and to hedgehog configurations. The only parameter of the model is the constituent quark mass MM which simultaneously controls the regularization. We evaluate meson and quark fields self-consistently in dependence on the constituent quark mass. It is shown that the self-consistent fields do practically not depend on the constituent quark mass. This allows us to define a properly parameterized reference field which for physically relevant constituent masses can be used as a good approximation to the exactly calculated one. The reference field is chosen to have correct behaviour for small and large radii. To test the agreement between self-consistent and reference fields we calculate several observables like nucleon energy, mean square radius, axial-vector constant and delta-nucleon mass splitting in dependence on the constituent quark mass. The agreement is found to be very well. Figures available on request.Comment: 12 pages (LATEX), 3 figures available on request, report FZR 93-1

    Hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells

    Get PDF
    We study the hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells. The corresponding polariton states are given. The analytical solution and the numerical result of the stationary spectrum for the cavity field are finishedComment: 3 pages, 1 figure. appear in Communications in Theoretical Physic

    Entangling two superconducting LC coherent modes via a superconducting flux qubit

    Full text link
    Based on a pure solid-state device consisting of two superconducting LC circuits coupled to a superconducting flux qubit, we propose in this paper that the maximally entangled coherent states of the two LC modes can be generated for arbitrary coherent states through flux qubit controls.Comment: 5 pages, 2 figure
    corecore