13,031 research outputs found
Triaxially deformed relativistic point-coupling model for hypernuclei: a quantitative analysis of hyperon impurity effect on nuclear collective properties
The impurity effect of hyperon on atomic nuclei has received a renewed
interest in nuclear physics since the first experimental observation of
appreciable reduction of transition strength in low-lying states of
hypernucleus Li. Many more data on low-lying states of
hypernuclei will be measured soon for -shell nuclei, providing good
opportunities to study the impurity effect on nuclear low-energy
excitations. We carry out a quantitative analysis of hyperon impurity
effect on the low-lying states of -shell nuclei at the beyond-mean-field
level based on a relativistic point-coupling energy density functional (EDF),
considering that the hyperon is injected into the lowest
positive-parity () and negative-parity () states. We
adopt a triaxially deformed relativistic mean-field (RMF) approach for
hypernuclei and calculate the binding energies of hypernuclei as well
as the potential energy surfaces (PESs) in deformation plane.
We also calculate the PESs for the hypernuclei with good quantum
numbers using a microscopic particle rotor model (PRM) with the same
relativistic EDF. The triaxially deformed RMF approach is further applied in
order to determine the parameters of a five-dimensional collective Hamiltonian
(5DCH) for the collective excitations of triaxially deformed core nuclei.
Taking Mg and Si as examples, we analyse
the impurity effects of and on the low-lying states of
the core nuclei...Comment: 15 pages with 18 figures and 1 table (version to be published in
Physical Review C
Acceleration and vacuum temperature
The quantum fluctuations of an "accelerated" vacuum state, that is vacuum
fluctuations in the presence of a constant electromagnetic field, can be
described by the temperature \TEH. Considering \TEH for the gyromagnetic
factor we show that \TEH(g=1)=\THU, where \THU is the Unruh
temperature experienced by an accelerated observer. We conjecture that both
particle production and nonlinear field effects inherent in the Unruh
accelerated observer case are described by the case QED of strong fields.
We present rates of particle production for and show that the case
is experimentally distinguishable from . Therefore, either
accelerated observers are distinguishable from accelerated vacuum or there is
unexpected modification of the theoretical framework.Comment: 4 pages, 1 figure; expanded discussion of experimental observables,
added references, version appearing in Phys Rev
The Fermi level effect in III-V intermixing: The final nail in the coffin?
Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 81, 2179 (1997) and may be found at
On Size and Shape of the Average Meson Fields in the Semibosonized Nambu & Jona-Lasinio Model
We consider a two-flavor Nambu \& Jona-Lasinio model in Hartree approximation
involving scalar-isoscalar and pseudoscalar-isovector quark-quark interactions.
Average meson fields are defined by minimizing the effective Euklidean action.
The fermionic part of the action, which contains the full Dirac sea, is
regularized within Schwinger's proper-time scheme. The meson fields are
restricted to the chiral circle and to hedgehog configurations. The only
parameter of the model is the constituent quark mass which simultaneously
controls the regularization. We evaluate meson and quark fields
self-consistently in dependence on the constituent quark mass. It is shown that
the self-consistent fields do practically not depend on the constituent quark
mass. This allows us to define a properly parameterized reference field which
for physically relevant constituent masses can be used as a good approximation
to the exactly calculated one. The reference field is chosen to have correct
behaviour for small and large radii. To test the agreement between
self-consistent and reference fields we calculate several observables like
nucleon energy, mean square radius, axial-vector constant and delta-nucleon
mass splitting in dependence on the constituent quark mass. The agreement is
found to be very well. Figures available on request.Comment: 12 pages (LATEX), 3 figures available on request, report FZR 93-1
Hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells
We study the hybrid exciton-polaritons in a bad microcavity containing the
organic and inorganic quantum wells. The corresponding polariton states are
given. The analytical solution and the numerical result of the stationary
spectrum for the cavity field are finishedComment: 3 pages, 1 figure. appear in Communications in Theoretical Physic
Entangling two superconducting LC coherent modes via a superconducting flux qubit
Based on a pure solid-state device consisting of two superconducting LC
circuits coupled to a superconducting flux qubit, we propose in this paper that
the maximally entangled coherent states of the two LC modes can be generated
for arbitrary coherent states through flux qubit controls.Comment: 5 pages, 2 figure
- …