47,839 research outputs found
Computational analysis of the flowfield of a two-dimensional ejector nozzle
A time-iterative full Navier-Stokes code, PARC, is used to analyze the flowfield of a two-dimensional ejector nozzle system. A parametric study was performed for two controlling parameters, duct to nozzle area ratio and nozzle pressure ratio. Results show that there is an optimum area ratio for the efficient pumping of secondary flow. At high area ratios, a freestream flow passes directly through the mixing duct without giving adequate pumping. At low area ratios, the jet boundary blocks the incoming flow. The nozzle pressure ratio variation shows that the pumping rate increases as the pressure ratio increases, provided there is no interaction between the shroud wall and the shock cell structure
The definability criterions for convex projective polyhedral reflection groups
Following Vinberg, we find the criterions for a subgroup generated by
reflections \Gamma \subset \SL^{\pm}(n+1,\mathbb{R}) and its finite-index
subgroups to be definable over where is an integrally
closed Noetherian ring in the field . We apply the criterions for
groups generated by reflections that act cocompactly on irreducible properly
convex open subdomains of the -dimensional projective sphere. This gives a
method for constructing injective group homomorphisms from such Coxeter groups
to \SL^{\pm}(n+1,\mathbb{Z}). Finally we provide some examples of
\SL^{\pm}(n+1,\mathbb{Z})-representations of such Coxeter groups. In
particular, we consider simplicial reflection groups that are isomorphic to
hyperbolic simplicial groups and classify all the conjugacy classes of the
reflection subgroups in \SL^{\pm}(n+1,\mathbb{R}) that are definable over
. These were known by Goldman, Benoist, and so on previously.Comment: 31 pages, 8 figure
Thermal activation energy of 3D vortex matter in NaFe1-xCoxAs (x=0.01, 0.03 and 0.07) single crystals
We report on the thermally activated flux flow dependency on the doping
dependent mixed state in NaFe1-xCoxAs (x=0.01, 0.03, and 0.07) crystals using
the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found
clearly that irrespective of the doping ratio, magnetoresistivity showed a
distinct tail just above the Tc, offset associated with the thermally activated
flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature
dependence of the activation energy follows the relation U(T, B)=U_0 (B)
(1-T/T_c )^q with q=1.5 in all studied crystals. The magnetic field dependence
of the activation energy follows a power law of U_0 (B)~B^(-{\alpha}) where the
exponent {\alpha} is changed from a low value to a high value at a crossover
field of B=~2T, indicating the transition from collective to plastic pinning in
the crystals. Finally, it is suggested that the 3D vortex phase is the dominant
phase in the low-temperature region as compared to the TAFF region in our
series samples
Temperature-dependent properties of the magnetic order in single-crystal BiFeO3
We report neutron diffraction and magnetization studies of the magnetic order
in multiferroic BiFeO3. In ferroelectric monodomain single crystals, there are
three magnetic cycloidal domains with propagation vectors equivalent by
crystallographic symmetry. The cycloid period slowly grows with increasing
temperature. The magnetic domain populations do not change with temperature
except in the close vicinity of the N{\P}eel temperature, at which, in
addition, a small jump in magneti- zation is observed. No evidence for the
spin-reorientation transitions proposed in previous Raman and dielectric
studies is found. The magnetic cycloid is slightly anharmonic for T=5 K. The
an- harmonicity is much smaller than previously reported in NMR studies. At
room temperature, a circular cycloid is observed, within errors. We argue that
the observed anharmonicity provides important clues for understanding
electromagnons in BiFeO3.Comment: In Press at PR
Abundance of Cosmological Relics in Low-Temperature Scenarios
We investigate the relic density n_\chi of non-relativistic long-lived or
stable particles \chi in cosmological scenarios in which the temperature T is
too low for \chi to achieve full chemical equilibrium. The case with a heavier
particle decaying into \chi is also investigated. We derive approximate
solutions for n_\chi(T) which accurately reproduce numerical results when full
thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz
no longer reproduces the correct temperature dependence of the \chi number
density. However, it does give the correct final relic density, to an accuracy
of about 3% or better, for all cross sections and initial temperatures.Comment: 26 pages, 8 figures, comments added, to appear in Phys. Rev.
On the Security of Millimeter Wave Vehicular Communication Systems using Random Antenna Subsets
Millimeter wave (mmWave) vehicular communica tion systems have the potential
to improve traffic efficiency and safety. Lack of secure communication links,
however, may lead to a formidable set of abuses and attacks. To secure
communication links, a physical layer precoding technique for mmWave vehicular
communication systems is proposed in this paper. The proposed technique
exploits the large dimensional antenna arrays available at mmWave systems to
produce direction dependent transmission. This results in coherent transmission
to the legitimate receiver and artificial noise that jams eavesdroppers with
sensitive receivers. Theoretical and numerical results demonstrate the validity
and effectiveness of the proposed technique and show that the proposed
technique provides high secrecy throughput when compared to conventional array
and switched array transmission techniques
- …