7,736 research outputs found

    Intense terahertz laser fields on a quantum dot with Rashba spin-orbit coupling

    Full text link
    We investigate the effects of the intense terahertz laser field and the spin-orbit coupling on single electron spin in a quantum dot. The laser field and the spin-orbit coupling can strongly affect the electron density of states and can excite a magnetic moment. The direction of the magnetic moment depends on the symmetries of the system, and its amplitude can be tuned by the strength and frequency of the laser field as well as the spin-orbit coupling.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy

    Theory of emission from an active photonic lattice

    Full text link
    The emission from a radiating source embedded in a photonic lattice is calculated. The analysis considers the photonic lattice and free space as a combined system. Furthermore, the radiating source and electromagnetic field are quantized. Results show the deviation of the photonic lattice spectrum from the blackbody distribution, with intracavity emission suppressed at certain frequencies and enhanced at others. In the presence of rapid population relaxation, where the photonic lattice and blackbody populations are described by the same equilibrium distribution, it is found that the enhancement does not result in output intensity exceeding that of the blackbody at the same frequency. However, for slow population relaxation, the photonic lattice population has a greater tendency to deviate from thermal equilibrium, resulting in output intensities exceeding those of the blackbody, even for identically pumped structures.Comment: 19 pages, 11 figure

    Electron spin relaxation in cubic GaN quantum dots

    Full text link
    The spin relaxation time T1T_{1} in zinc blende GaN quantum dot is investigated for different magnetic field, well width and quantum dot diameter. The spin relaxation caused by the two most important spin relaxation mechanisms in zinc blende semiconductor quantum dots, {i.e.} the electron-phonon scattering in conjunction with the Dresselhaus spin-orbit coupling and the second-order process of the hyperfine interaction combined with the electron-phonon scattering, are systematically studied. The relative importance of the two mechanisms are compared in detail under different conditions. It is found that due to the small spin orbit coupling in GaN, the spin relaxation caused by the second-order process of the hyperfine interaction combined with the electron-phonon scattering plays much more important role than it does in the quantum dot with narrower band gap and larger spin-orbit coupling, such as GaAs and InAs.Comment: 8 pages, 5 figures, PRB 79, 2009, in pres

    Bethe-Salpeter equation for doubly heavy baryons in the covariant instantaneous approximation

    Get PDF
    In the heavy quark limit, a doubly heavy baryon is regarded as composed of a heavy diquark and a light quark. We establish the Bethe-Salpeter (BS) equations for the heavy diquarks and the doubly heavy baryons, respectively, to leading order in a 1/mQ1/m_{Q} expansion. The BS equations are solved numerically under the covariant instantaneous approximation with the kernels containing scalar confinement and one-gluon-exchange terms. The masses for the heavy diquarks and the doubly heavy baryons are obtained and the non-leptonic decay widths for the doubly heavy baryons emitting a pseudo-scalar meson are calculated within the model.Comment: Corrections to the text, two references added, version accepted for publication in Physical Review

    Numerical Study of the Spin Hall Conductance in the Luttinger Model

    Full text link
    We present first numerical studies of the disorder effect on the recently proposed intrinsic spin Hall conductance in a three dimensional (3D) lattice Luttinger model. The results show that the spin Hall conductance remains finite in a wide range of disorder strength, with large fluctuations. The disorder-configuration-averaged spin Hall conductance monotonically decreases with the increase of disorder strength and vanishes before the Anderson localization takes place. The finite-size effect is also discussed.Comment: 4 pages, 4 figures; the final version appearing in PR

    Stability of antiphase line defects in nanometer-sized boron-nitride cones

    Full text link
    We investigate the stability of boron nitride conical sheets of nanometer size, using first-principles calculations. Our results indicate that cones with an antiphase boundary (a line defect that contains either B-B or N-N bonds) can be more stable than those without one. We also find that doping the antiphase boundaries with carbon can enhance their stability, leading also to the appearance of localized states in the bandgap. Among the structures we considered, the one with the smallest formation energy is a cone with a carbon-modified antiphase boundary that presents a spin splitting of about 0.5 eV at the Fermi level.Comment: 5 two-column pages with 2 figures Accepted for publication in Physical Review B (vol 70, 15 Nov.

    Effect of Ce on stainless steel performance during electroslag remelting (ESR)

    Get PDF
    Three electroslag remelting heats were carried out by using a 1-ton argon atmosphere ESR furnace under three kinds of slag containing different Ce2O3 content. Specimens were taken at electrode and each ingot for analyzing the inclusions by scanning electron microscope - energy dispersive spectrometer (SEM-EDS). After heat treatment, the tensile and impact of each steel product was measured to study the effect of Ce content on steel performance.The results show that the non-metallic inclusions content was largely reduced in each ingot compared with that in electrode, and the ingot containing 0,05 % Ce has the best steel cleanliness and performance, while the ingot containing 0,13 % Ce has the worst steel cleanliness and performance
    • …
    corecore