140,751 research outputs found

    SWEET11 and 15 as key players in seed filling in rice

    No full text

    Optimal transfer of an unknown state via a bipartite operation

    Full text link
    A fundamental task in quantum information science is to transfer an unknown state from particle AA to particle BB (often in remote space locations) by using a bipartite quantum operation EAB\mathcal{E}^{AB}. We suggest the power of EAB\mathcal{E}^{AB} for quantum state transfer (QST) to be the maximal average probability of QST over the initial states of particle BB and the identifications of the state vectors between AA and BB. We find the QST power of a bipartite quantum operations satisfies four desired properties between two dd-dimensional Hilbert spaces. When AA and BB are qubits, the analytical expressions of the QST power is given. In particular, we obtain the exact results of the QST power for a general two-qubit unitary transformation.Comment: 6 pages, 1 figur

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Alā€“Mgā€“Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Alā€“Mgā€“Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Alā€“Mgā€“Siā€“Mnā€“Fe and Alā€“Mgā€“Siā€“Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Alā€“Mgā€“Siā€“Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same Ī±-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, Ī²-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Alā€“Mgā€“Si alloy, the identified Fe-rich intermetallics included the compact Ī±-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped Ī²-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of Ī±-AlFeMnSi intermetallics and suppresses the formation of Ī²-AlFe phase in the Alā€“Mgā€“Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Alā€“Mgā€“Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Alā€“Mgā€“Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Alā€“Mgā€“Siā€“Mnā€“Fe and Alā€“Mgā€“Siā€“Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Alā€“Mgā€“Siā€“Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same Ī±-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, Ī²-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Alā€“Mgā€“Si alloy, the identified Fe-rich intermetallics included the compact Ī±-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped Ī²-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of Ī±-AlFeMnSi intermetallics and suppresses the formation of Ī²-AlFe phase in the Alā€“Mgā€“Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms

    Full text link
    With the help of the F-basis provided by the Drinfeld twist or factorizing F-matrix for the open XXZ spin chain with non-diagonal boundary terms, we obtain the determinant representations of the scalar products of Bethe states of the model.Comment: Latex file, 28 pages, based on the talk given by W. -L. Yang at Statphys 24, Cairns, Australia, 19-23 July, 201
    • ā€¦
    corecore