8,157 research outputs found

    The X-ray binary population in M33: II. X-ray spectra and variability

    Full text link
    In this paper we investigate the X-ray spectra and X-ray spectral variability of compact X-ray sources for 3 Chandra observations of the Local Group galaxy M33. The observations are centered on the nucleus and the star forming region NGC 604. In the observations 261 sources have been detected. For a total of 43 sources the number of net counts is above 100, sufficient for a more detailed spectral fitting. Of these sources, 25 have been observed in more than one observation, allowing the study of spectral variability on ~months timescales. A quarter of the sources are found to be variable between observations. However, except for two foreground sources, no source is variable within any observation above the 99% confidence level. Only six sources show significant spectral variability between observations. A comparison of N_H values with HI observations shows that X-ray absorption values are consistent with Galactic X-ray binaries and most sources in M33 are intrinsically absorbed. The pattern of variability and the spectral parameters of these sources are consistent with the M33 X-ray source population being dominated by X-ray binaries: Two thirds of the 43 bright sources have spectral and timing properties consistent with X-ray binaries; we also find two candidates for super-soft sources and two candidates for quasi-soft sources.Comment: 25 pages, ApJ accepte

    Exact Dynamics of Multicomponent Bose-Einstein Condensates in Optical Lattices in One, Two and Three Dimensions

    Full text link
    Numerous exact solutions to the nonlinear mean-field equations of motion are constructed for multicomponent Bose-Einstein condensates on one, two, and three dimensional optical lattices. We find both stationary and nonstationary solutions, which are given in closed form. Among these solutions are a vortex-anti-vortex array on the square optical lattice and modes in which two or more components slosh back and forth between neighboring potential wells. We obtain a variety of solutions for multicomponent condensates on the simple cubic lattice, including a solution in which one condensate is at rest and the other flows in a complex three-dimensional array of intersecting vortex lines. A number of physically important solutions are stable for a range of parameter values, as we show by direct numerical integration of the equations of motion.Comment: 22 pages, 9 figure

    Gravitational Instantons and Fluxes from M/F-theory on Calabi-Yau fourfolds

    Full text link
    We compactify four-dimensional N=1 gauged supergravity theories on a circle including fluxes for shift-symmetric scalars. Four-dimensional Taub-NUT gravitational instantons universally correct the three-dimensional superpotential in the absence of fluxes. In the presence of fluxes these Taub-NUT instanton contributions are no longer gauge-invariant. Invariance can be restored by gauge instantons on top of Taub-NUT instantons. We establish the embedding of this scenario into M-theory. Circle fluxes and gaugings arise from a restricted class of M-theory four-form fluxes on a resolved Calabi-Yau fourfold. The M5-brane on the base of the elliptic fourfold dualizes into the universal Taub-NUT instanton. In the presence of fluxes this M5-brane is anomalous. We argue that anomaly free contributions arise from involved M5-brane geometries dual to gauge-instantons on top of Taub-NUT instantons. Adding a four-dimensional superpotential to the gravitational instanton corrections leads to three-dimensional Anti-de Sitter vacua at stabilized compactification radius. We comment on the possibility to uplift these M-theory vacua, and to tunnel to four-dimensional F-theory vacua.Comment: 47 pages, 2 figure

    Fluxes and Warping for Gauge Couplings in F-theory

    Full text link
    We compute flux-dependent corrections in the four-dimensional F-theory effective action using the M-theory dual description. In M-theory the 7-brane fluxes are encoded by four-form flux and modify the background geometry and Kaluza-Klein reduction ansatz. In particular, the flux sources a warp factor which also depends on the torus directions of the compactification fourfold. This dependence is crucial in the derivation of the four-dimensional action, although the torus fiber is auxiliary in F-theory. In M-theory the 7-branes are described by an infinite array of Taub-NUT spaces. We use the explicit metric on this geometry to derive the locally corrected warp factor and M-theory three-from as closed expressions. We focus on contributions to the 7-brane gauge coupling function from this M-theory back-reaction and show that terms quadratic in the internal seven-brane flux are induced. The real part of the gauge coupling function is modified by the M-theory warp factor while the imaginary part is corrected due to a modified M-theory three-form potential. The obtained contributions match the known weak string coupling result, but also yield additional terms suppressed at weak coupling. This shows that the completion of the M-theory reduction opens the way to compute various corrections in a genuine F-theory setting away from the weak string coupling limit.Comment: 46 page

    Optical and evaporative cooling of cesium atoms in the gravito-optical surface trap

    Get PDF
    We report on cooling of an atomic cesium gas closely above an evanescent-wave atom mirror. At high densitities, optical cooling based on inelastic reflections is found to be limited by a density-dependent excess temperature and trap loss due to ultracold collisions involving repulsive molecular states. Nevertheless, very good starting conditions for subsequent evaporative cooling are obtained. Our first evaporation experiments show a temperature reduction from 10muK down to 300nK along with a gain in phase-space density of almost two orders of magnitude.Comment: 8 pages, 6 figures, submitted to Journal of Modern Optics, special issue "Fundamentals of Quantum Optics V", edited by F. Ehlotzk

    Birth, death and diffusion of interacting particles

    Get PDF
    Individual-based models of chemical or biological dynamics usually consider individual entities diffusing in space and performing a birth-death type dynamics. In this work we study the properties of a model in this class where the birth dynamics is mediated by the local, within a given distance, density of particles. Groups of individuals are formed in the system and in this paper we concentrate on the study of the properties of these clusters (lifetime, size, and collective diffusion). In particular, in the limit of the interaction distance approaching the system size, a unique cluster appears which helps to understand and characterize the clustering dynamics of the model.Comment: 15 pages, 6 figures, Iop style. To appear in Journal of Physics A: Condensed matte

    Implementing the one-dimensional quantum (Hadamard) walk using a Bose-Einstein Condensate

    Full text link
    We propose a scheme to implement the simplest and best-studied version of quantum random walk, the discrete Hadamard walk, in one dimension using coherent macroscopic sample of ultracold atoms, Bose-Einstein condensate (BEC). Implementation of quantum walk using BEC gives access to the familiar quantum phenomena on a macroscopic scale. This paper uses rf pulse to implement Hadamard operation (rotation) and stimulated Raman transition technique as unitary shift operator. The scheme suggests implementation of Hadamard operation and unitary shift operator while the BEC is trapped in long Rayleigh range optical dipole trap. The Hadamard rotation and a unitary shift operator on BEC prepared in one of the internal state followed by a bit flip operation, implements one step of the Hadamard walk. To realize a sizable number of steps, the process is iterated without resorting to intermediate measurement. With current dipole trap technology it should be possible to implement enough steps to experimentally highlight the discrete quantum random walk using a BEC leading to further exploration of quantum random walks and its applications.Comment: 7 pages, 3 figure

    Anomaly Cancelation in Field Theory and F-theory on a Circle

    Full text link
    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes adde
    • 

    corecore