44,689 research outputs found

    The Management and Use of Social Network Sites in a Government Department

    Full text link
    In this paper we report findings from a study of social network site use in a UK Government department. We have investigated this from a managerial, organisational perspective. We found at the study site that there are already several social network technologies in use, and that these: misalign with and problematize organisational boundaries; blur boundaries between working and social lives; present differing opportunities for control; have different visibilities; have overlapping functionality with each other and with other information technologies; that they evolve and change over time; and that their uptake is conditioned by existing infrastructure and availability. We find the organisational complexity that social technologies are often hoped to cut across is, in reality, something that shapes their uptake and use. We argue the idea of a single, central social network site for supporting cooperative work within an organisation will hit the same problems as any effort of centralisation in organisations. We argue that while there is still plenty of scope for design and innovation in this area, an important challenge now is in supporting organisations in managing what can best be referred to as a social network site 'ecosystem'.Comment: Accepted for publication in JCSCW (The Journal of Computer Supported Cooperative Work

    Is the Lambda CDM Model Consistent with Observations of Large-Scale Structure?

    Full text link
    The claim that large-scale structure data independently prefers the Lambda Cold Dark Matter model is a myth. However, an updated compilation of large-scale structure observations cannot rule out Lambda CDM at 95% confidence. We explore the possibility of improving the model by adding Hot Dark Matter but the fit becomes worse; this allows us to set limits on the neutrino mass.Comment: To appear in Proceedings of "Sources and Detection of Dark Matter/Energy in the Universe", ed. D. B. Cline. 6 pages, including 2 color figure

    Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni

    Get PDF
    Copyright @ 2014 Arican-Goktas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships.NIH and Sandler Borroughs Wellcome Travel Fellowshi

    In situ studies of materials for high temperature CO2 capture and storage.

    Get PDF
    Carbon capture and storage (CCS) offers a possible solution to curb the CO2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO2 capture, such as the CaO-CaCO3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions

    Chaos in the Gauge/Gravity Correspondence

    Full text link
    We study the motion of a string in the background of the Schwarzschild black hole in AdS_5 by applying the standard arsenal of dynamical systems. Our description of the phase space includes: the power spectrum, the largest Lyapunov exponent, Poincare sections and basins of attractions. We find convincing evidence that the motion is chaotic. We discuss the implications of some of the quantities associated with chaotic systems for aspects of the gauge/gravity correspondence. In particular, we suggest some potential relevance for the information loss paradox.Comment: 29 pages, 11 figure

    Continuity of Local Time: An applied perspective

    Full text link
    Continuity of local time for Brownian motion ranks among the most notable mathematical results in the theory of stochastic processes. This article addresses its implications from the point of view of applications. In particular an extension of previous results on an explicit role of continuity of (natural) local time is obtained for applications to recent classes of problems in physics, biology and finance involving discontinuities in a dispersion coefficient. The main theorem and its corollary provide physical principles that relate macro scale continuity of deterministic quantities to micro scale continuity of the (stochastic) local time.Comment: To appear in: "The fascination of Probability, Statistics and Their Applications. In honour of Ole E. Barndorff-Nielsen on his 80th birthday

    Solving the riddle of codon usage preferences: a test for translational selection

    Get PDF
    Translational selection is responsible for the unequal usage of synonymous codons in protein coding genes in a wide variety of organisms. It is one of the most subtle and pervasive forces of molecular evolution, yet, establishing the underlying causes for its idiosyncratic behaviour across living kingdoms has proven elusive to researchers over the past 20 years. In this study, a statistical model for measuring translational selection in any given genome is developed, and the test is applied to 126 fully sequenced genomes, ranging from archaea to eukaryotes. It is shown that tRNA gene redundancy and genome size are interacting forces that ultimately determine the action of translational selection, and that an optimal genome size exists for which this kind of selection is maximal. Accordingly, genome size also presents upper and lower boundaries beyond which selection on codon usage is not possible. We propose a model where the coevolution of genome size and tRNA genes explains the observed patterns in translational selection in all living organisms. This model finally unifies our understanding of codon usage across prokaryotes and eukaryotes. Helicobacter pylori, Saccharomyces cerevisiae and Homo sapiens are codon usage paradigms that can be better understood under the proposed model

    Spectral Action for Robertson-Walker metrics

    Get PDF
    We use the Euler-Maclaurin formula and the Feynman-Kac formula to extend our previous method of computation of the spectral action based on the Poisson summation formula. We show how to compute directly the spectral action for the general case of Robertson-Walker metrics. We check the terms of the expansion up to a_6 against the known universal formulas of Gilkey and compute the expansion up to a_{10} using our direct method

    Numerics of boundary-domain integral and integro-differential equations for BVP with variable coefficient in 3D

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the links below - Copyright @ 2013 Springer-VerlagA numerical implementation of the direct boundary-domain integral and integro-differential equations, BDIDEs, for treatment of the Dirichlet problem for a scalar elliptic PDE with variable coefficient in a three-dimensional domain is discussed. The mesh-based discretisation of the BDIEs with tetrahedron domain elements in conjunction with collocation method leads to a system of linear algebraic equations (discretised BDIE). The involved fully populated matrices are approximated by means of the H-Matrix/adaptive cross approximation technique. Convergence of the method is investigated.This study is partially supported by the EPSRC grant EP/H020497/1:"Mathematical Analysis of Localised-Boundary-Domain Integral Equations for Variable-Coefficients Boundary Value Problems"
    corecore