5,072 research outputs found

    Single particle spectrum of the flux phase in the FM Kondo Model

    Full text link
    We investigate the 2D ferromagnetic Kondo lattice model for manganites with classical corespins at Hund's rule coupling J_H=6, with antiferromagnetic superexchange 0.03 < J' < 0.05. We employ canonical and grand canonical unbiased Monte Carlo simulations and find paramagnetism, weak ferromagnetism and the Flux phase, depending on doping and on J'. The observed single particle spectrum in the flux phase differs from the idealized infinite lattice case, but agrees well with an idealized finite lattice case with thermal fluctuations.Comment: contribution to the SCES04 conferenc

    c-axis Raman Scattering in MgB2: Observation of a Dirty-Limit Gap in the pi-bands

    Full text link
    Raman scattering spectra from the ac-face of thick MgB2 single crystals were measured in zz, xz and xx polarisations. In zz and xz polarisations a threshold at around 29 cm^{-1} forms in the below Tc continuum but no pair-breaking peak is seen, in contrast to the sharp pair-breaking peak at around 100 cm^{-1} seen in xx polarisation. The zz and xz spectra are consistent with Raman scattering from a dirty superconductor while the sharp peak in the xx spectra argues for a clean system. Analysis of the spectra resolves this contradiction, placing the larger and smaller gap magnitudes in the sigma and pi bands, and indicating that relatively strong impurity scattering is restricted to the pi bands.Comment: Revised manuscript accepted for publication in Physical Review Letter

    Infection rates in patients from five rheumatoid arthritis (RA) registries: contextualising an RA clinical trial programme

    Get PDF
    OBJECTIVE: Patients with rheumatoid arthritis (RA) have an increased risk of serious infections. Comparing infection rates across RA populations is complicated by differences in background infection risk, population composition and study methodology. We measured infection rates from five RA registries globally, with the aim to contextualise infection rates from an RA clinical trials population. METHODS: We used data from Consortium of Rheumatology Research of North America (CORRONA) (USA), Swedish Rheumatology Quality of Care Register (Sweden), Norfolk Arthritis Register (UK), CORRONA International (multiple countries) and Institute of Rheumatology Rheumatoid Arthritis (Japan) and an RA clinical trial programme (fostamatinib). Within each registry, we analysed a main cohort of all patients with RA from January 2000 to last available data. Infection definitions were harmonised across registries. Sensitivity analyses to address potential confounding explored subcohorts defined by disease activity, treatment change and/or prior comorbidities and restriction by calendar time or follow-up. Rates of infections were estimated and standardised to the trial population for age/sex and, in one sensitivity analysis also, for Health Assessment Questionnaire (HAQ) score. RESULTS: Overall, age/sex-standardised rates of hospitalised infection were quite consistent across registries (range 1.14-1.62 per 100 patient-years). Higher and more consistent rates across registries and with the trial programme overall were seen when adding standardisation for HAQ score (registry range 1.86-2.18, trials rate 2.92) or restricting to a treatment initiation subcohort followed for 18 months (registry range 0.99-2.84, trials rate 2.74). CONCLUSION: This prospective, coordinated analysis of RA registries provided incidence rate estimates for infection events to contextualise infection rates from an RA clinical trial programme and demonstrated relative comparability of hospitalised infection rates across registries

    Stau relic density at the Big-Bang nucleosynthesis era consistent with the abundance of the light element nuclei in the coannihilation scenario

    Full text link
    We calculate the relic density of stau at the beginning of the Big-Bang Nucleosynthesis (BBN) era in the coannihilation scenario of minimal supersymmetric standard model (MSSM). In this scenario, stau can be long-lived and form bound states with nuclei. We put constraints on the parameter space of MSSM by connecting the calculation of the relic density of stau to the observation of the light elements abundance, which strongly depends on the relic density of stau. Consistency between the theoretical prediction and the observational result, both of the dark matter abundance and the light elements abundance, requires the mass difference between the lighter stau and the lightest neutralino to be around 100MeV, the stau mass to be 300 -- 400 GeV, and the mixing angle of the left and right-handed staus to be sinθτ=(0.651)\sin\theta_{\tau} = (0.65 \textrm{--} 1).Comment: 9 pages, 5 figures, figure 5 correcte

    A Model of Strongly Correlated Electrons with Condensed Resonating-Valence-Bond Ground States

    Full text link
    We propose a new exactly solvable model of strongly correlated electrons. The model is based on a dd-pp model of the CuO2_2 plane with infinitely large repulsive interactions on Cu-sites, and it contains additional correlated-hopping, pair-hopping and charge-charge interactions of electrons. For even numbers of electrons less than or equal to 2/3-filling, we construct the exact ground states of the model, all of which have the same energy and each of which is the unique ground state for a fixed electron number. It is shown that these ground states are the resonating-valence-bond states which are also regarded as condensed states in which all electrons are in a single two-electron state. We also show that the ground states exhibit off-diagonal long-range order.Comment: 17 pages, 1 figure, v2: minor changes, v3: minor changes and typos correction

    Phase Diagram of Lattice-Spin System RbCoBr3_3

    Full text link
    We study the lattice-spin model of RbCoBr3_3 which is proposed by Shirahata and Nakamura, by mean field approximation. This model is an Ising spin system on a distorted triangular lattice. There are two kinds of frustrated variables, that is, the lattice and spin. We obtain a phase diagram of which phase boundary is drawn continuously in a whole region. Intermediate phases that include a partial disordered state appear. The model has the first-order phase transitions in addition to the second-order phase transitions. We find a three-sublattice ferrimagnetic state in the phase diagram. The three-sublattice ferrimagnetic state does not appear when the lattice is not distorted.Comment: 5 pages, 4 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn. Vol.75 (2006) No.

    Supersymmetric Modified Korteweg-de Vries Equation: Bilinear Approach

    Full text link
    A proper bilinear form is proposed for the N=1 supersymmetric modified Korteweg-de Vries equation. The bilinear B\"{a}cklund transformation of this system is constructed. As applications, some solutions are presented for it.Comment: 8 pages, LaTeX using packages amsmath and amssymb, some corrections mad

    Early and Late-Time Observations of SN 2008ha: Additional Constraints for the Progenitor and Explosion

    Full text link
    We present a new maximum-light optical spectrum of the the extremely low luminosity and exceptionally low energy Type Ia supernova (SN Ia) 2008ha, obtained one week before the earliest published spectrum. Previous observations of SN 2008ha were unable to distinguish between a massive star and white dwarf origin for the SN. The new maximum-light spectrum, obtained one week before the earliest previously published spectrum, unambiguously shows features corresponding to intermediate mass elements, including silicon, sulfur, and carbon. Although strong silicon features are seen in some core-collapse SNe, sulfur features, which are a signature of carbon/oxygen burning, have always been observed to be weak in such events. It is therefore likely that SN 2008ha was the result of a thermonuclear explosion of a carbon-oxygen white dwarf. Carbon features at maximum light show that unburned material is present to significant depths in the SN ejecta, strengthening the case that SN 2008ha was a failed deflagration. We also present late-time imaging and spectroscopy that are consistent with this scenario.Comment: ApJL, accepted. 5 pages, 3 figure

    Aspects of the FM Kondo Model: From Unbiased MC Simulations to Back-of-an-Envelope Explanations

    Full text link
    Effective models are derived from the ferromagnetic Kondo lattice model with classical corespins, which greatly reduce the numerical effort. Results for these models are presented. They indicate that double exchange gives the correct order of magnitude and the correct doping dependence of the Curie temperature. Furthermore, we find that the jump in the particle density previously interpreted as phase separation is rather explained by ferromagnetic polarons.Comment: Proceedings of Wandlitz Days of Magnetism 200

    Cantor Spectra for Double Exchange Model

    Full text link
    We numerically study energy spectra and localization properties of the double exchange model at irrational filling factor. To obtain variational ground state, we use a mumerical technique in momentum space by ``embedded'' boundary condition which has no finite size effect a priori. Although the Hamiltonian has translation invariance, the ground state spontaneously exhibits a self-similarity. Scaling and multi-fractal analysis for the wave functions are performed and the scaling indices α\alpha's are obtained. The energy spectrum is found to be a singular continuous, so-called the Cantor set with zero Lebesque measure.Comment: 4 pages, 4 figures, revtex, corrected some typos, accepted for publication in PR
    corecore