2,691 research outputs found

    Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons

    Full text link
    We consider the decoherence of photons suffering in phase-damping channels. By exploring the evolutions of single-photon polarization states and two-photon polarization-entangled states, we find that different frequency spectrum envelopes of photons induce different decoherence processes. A white frequency spectrum can lead the decoherence to an ideal Markovian process. Some color frequency spectrums can induce asymptotical decoherence, while, some other color frequency spectrums can make coherence vanish periodically with variable revival amplitudes. These behaviors result from the non-Markovian effects on the decoherence process, which may give rise to a revival of coherence after complete decoherence.Comment: 7 pages, 4 figures, new results added, replaced by accepted versio

    A Fair and Secure Cluster Formation Process for Ad Hoc Networks

    Get PDF
    An efficient approach for organizing large ad hoc networks is to divide the nodes into multiple clusters and designate, for each cluster, a clusterhead which is responsible for holding intercluster control information. The role of a clusterhead entails rights and duties. On the one hand, it has a dominant position in front of the others because it manages the connectivity and has access to other nodeÂżs sensitive information. But on the other hand, the clusterhead role also has some associated costs. Hence, in order to prevent malicious nodes from taking control of the group in a fraudulent way and avoid selfish attacks from suitable nodes, the clusterhead needs to be elected in a secure way. In this paper we present a novel solution that guarantees the clusterhead is elected in a cheat-proof manner

    Cavity QED treatment of scattering-induced efficient free-space excitation and collection in high-Q whispering-gallery microcavities

    Full text link
    Whispering-gallery microcavity laser possesses ultralow threshold, whereas convenient free-space optical excitation and collection suffer from low efficiencies due to its rotational symmetry. Here we analytically study a three-dimensional microsphere coupled to a nano-sized scatterer in the framework of quantum optics. It is found that the scatterer is capable of coupling light in and out of the whispering-gallery modes (WGMs) without seriously degrading their high-Q properties, while the microsphere itself plays the role of a lens to focus the input beam on the scatterer and vice versa. Our analytical results show that (1) the high-Q WGMs can be excited in free space, and (2) over 50% of the microcavity laser emission can be collected within less than 1∘{1}^{\circ}. This coupling system holds great potential for low threshold microlasers free of external couplers.Comment: 10 pages, 8 figure

    Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator

    Full text link
    We propose a hybrid photonic-plasmonic resonant structure which consists of a metal nanoparticle (MNP) and a whispering gallery mode (WGM) microcavity. It is found that the hybrid mode enables a strong interaction between the light and matter, and the single-atom cooperativity is enhanced by more than two orders of magnitude compared to that in a bare WGM microcavity. This remarkable improvement originates from two aspects: (1) the MNP offers a highly enhanced local field in the vicinity of an emitter, and (2), surprisingly, the high-\textit{Q} property of WGMs can be maintained in the presence of the MNP. Thus the present system has great advantages over a single microcavity or a single MNP, and holds great potential in quantum optics, nonlinear optics and highly sensitive biosening.Comment: 5 pages, 4 figure

    Effects of space flight factors on genetic diversity of Buchloe dactyloides seeds

    Get PDF
    The objective of this research was to investigate the effects of space flight factors on Buchloe dactyloides “Jingyin No.3” seeds. After the retrieval, basic turf characters of plants were tested. Among the 100 plants tested, 21 showed great change on phenotype characters, including leaf blade length and width, height, stem diameter, number of tillers, number and length of stolon, length of stolon inter node, leaf color and extent of leaf turning yellow. 33 primers were screened in inter-simple sequence repeats (ISSR) analysis to evaluate DNA variation between mutations and their ground controls. Results show that 15.6 reliable bands were generated by 7 primers, of which 12.9 (80.9%) were polymorphic. Based on the study, we can conclude that the space flight factors could induce inheritable mutagenic changes on B. dactyloides seeds, and do further research to demonstrate these changes in genetic material of the mutants.Key words: Genetic diversity, Buchloe dactyloides, spaceflight, inter-simple sequence repeats

    Coupling of a Single Diamond Nanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefitting from Rayleigh Scattering

    Full text link
    We study the Rayleigh scattering induced by a diamond nanocrystal in a whispering-gallery-microcavity--waveguide coupling system, and find that it plays a significant role in the photon transportation. On one hand, this study provides a new insight into future solid-state cavity quantum electrodynamics toward strong coupling physics. On the other hand, benefitting from this Rayleigh scattering, novel photon transportation such as dipole induced transparency and strong photon antibunching can occur simultaneously. As potential applications, this system can function as high-efficiency photon turnstiles. In contrast to [B. Dayan \textit{et al.}, \textrm{Science} \textbf{319},1062 (2008)], the photon turnstiles proposed here are highly immune to nanocrystal's azimuthal position.Comment: 4 pages, 4 figure

    Structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering

    Get PDF
    We report on the structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering, using transmission electron microscopy (TEM), high-resolution x-ray diffraction, and Rutherford backscattering spectroscopy (RBS) measurements. The ferromagnetic Mn-doped ZnO film showed magnetization hysteresis at 5 and 300 K. A TEM analysis revealed that the Mn-doped ZnO included a high density of round-shaped cubic and elongated hexagonal MnZn oxide precipitates. The incorporation of Mn caused a large amount of structural disorder in the crystalline columnar ZnO lattice, although the wurtzite crystal structure was maintained. The observed ferromagnetism is discussed based on the structural characteristics indicated by TEM and the behavior of Mn when it is substituted into a ZnO lattice derived from RBS measurements

    Data-driven generation of 4D velocity profiles in the aneurysmal ascending aorta

    Get PDF
    Numerical simulations of blood flow are a valuable tool to investigate the pathophysiology of ascending thoracic aortic aneurysms (ATAA). To accurately reproduce hemodynamics, computational fluid dynamics (CFD) models must employ realistic inflow boundary conditions (BCs). However, the limited availability of in vivo velocity measurements still makes researchers resort to idealized BCs. In this study we generated and thoroughly characterized a large dataset of synthetic 4D aortic velocity profiles suitable to be used as BCs for CFD simulations. 4D flow MRI scans of 30 subjects with ATAA were processed to extract cross-sectional planes along the ascending aorta, ensuring spatial alignment among all planes and interpolating all velocity fields to a reference configuration. Velocity profiles of the clinical cohort were extensively characterized by computing flow morphology descriptors of both spatial and temporal features. By exploiting principal component analysis (PCA), a statistical shape model (SSM) of 4D aortic velocity profiles was built and a dataset of 437 synthetic cases with realistic properties was generated. Comparison between clinical and synthetic datasets showed that the synthetic data presented similar characteristics as the clinical population in terms of key morphological parameters. The average velocity profile qualitatively resembled a parabolic-shaped profile, but was quantitatively characterized by more complex flow patterns which an idealized profile would not replicate. Statistically significant correlations were found between PCA principal modes of variation and flow descriptors. We built a data-driven generative model of 4D aortic velocity profiles, suitable to be used in computational studies of blood flow. The proposed software system also allows to map any of the generated velocity profiles to the inlet plane of any virtual subject given its coordinate set.Comment: 21 pages, 5 figures, 2 tables To be submitted to "Computer methods and programs in biomedicine" Scripts: https://github.com/saitta-s/flow4D Synthetic velocity profiles: //doi.org/10.5281/zenodo.725198
    • …
    corecore