192 research outputs found

    Quark Mass Dependence of Nucleon Properties and Extrapolation from Lattice QCD

    Get PDF
    We summarize developments concerning the quark mass dependence of nucleon magnetic moments and the axial-vector coupling constant g_A. The aim is to explore the feasibility of chiral effective field theory methods for the extrapolation of lattice QCD results, from the relatively large quark masses that can be handled in such computations down to the physically relevant range.Comment: 9 pages, Latex, 4ps figures, uses World Scientific style file; presented at International School ``Quarks in Hadrons and Nuclei'', Erice, Sicily, September 200

    Quark mass dependence of nucleon mass and axial-vector coupling constant

    Full text link
    We present an updated analysis of the quark mass dependence of the nucleon mass and nucleon axial-vector coupling g_A, comparing different formulations of SU(2) Baryon Chiral Effective Field Theory, with and without explicit delta (1232) degrees of freedom. We discuss the outcome of the corresponding interpolations between lattice QCD data and the physical values for these two nucleon observables. It turns out that in order to obtain successful interpolating functions at one-loop order, the inclusion of explicit delta (1232) degrees of freedom is not decisive for the nucleon mass but crucial for g_A. A chiral extrapolation of recent lattice results by the LHP collaborations is also shown.Comment: 5 pages, 7 figures, Talk given at the Workshop on Computational Hadron Physics, Nicosia, Cyprus, 14-17 September 200

    On the Early History of Current Algebra

    Full text link
    The history of Current Algebra is reviewed up to the appearance of the Adler-Weisberger sum rule. Particular emphasis is given to the role current algebra played for the historical struggle in strong interaction physics of elementary particles between the S-matrix approach based on dispersion relations and field theory. The question whether there are fundamental particles or all hadrons are bound or resonant states of one another played an important role in this struggle and is thus also regarded.Comment: 17 page

    Quark Description of Hadronic Phases

    Get PDF
    We extend our proposal that major universality classes of hadronic matter can be understood, and in favorable cases calculated, directly in the microscopic quark variables, to allow for splitting between strange and light quark masses. A surprisingly simple but apparently viable picture emerges, featuring essentially three phases, distinguished by whether strangeness is conserved (standard nuclear matter), conserved modulo two (hypernuclear matter), or locked to color (color flavor locking). These are separated by sharp phase transitions. There is also, potentially, a quark phase matching hadronic K-condensation. The smallness of the secondary gap in two-flavor color superconductivity corresponds to the disparity between the primary dynamical energy scales of QCD and the much smaller energy scales of nuclear physics.Comment: 21 pages, 2 figure

    Robin conditions on the Euclidean ball

    Full text link
    Techniques are presented for calculating directly the scalar functional determinant on the Euclidean d-ball. General formulae are given for Dirichlet and Robin boundary conditions. The method involves a large mass asymptotic limit which is carried out in detail for d=2 and d=4 incidentally producing some specific summations and identities. Extensive use is made of the Watson-Kober summation formula.Comment: 36p,JyTex, misprints corrected and a section on the massive case adde

    Quark mass dependence of the nucleon axial-vector coupling constant

    Full text link
    We study the quark mass expansion of the axial-vector coupling constant g_A of the nucleon. The aim is to explore the feasibility of chiral effective field theory methods for extrapolation of lattice QCD results - so far determined at relatively large quark masses corresponding to pion masses larger than 0.6 GeV - down to the physical value of the pion mass. We compare two versions of non-relativistic chiral effective field theory: One scheme restricted to pion and nucleon degrees of freedom only, and an alternative approach which incorporates explicit Delta(1230) resonance degrees of freedom. It turns out that, in order to approach the physical value of g_A in a leading-one-loop calculation, the inclusion of the explicit Delta(1230) degrees of freedom is crucial. With information on important higher order couplings constrained from analyses of inelastic pion production processes, a chiral extrapolation function for g_A is obtained, which works well from the chiral limit across the physical point into the region of present lattice data. The resulting enhancement of our extrapolation function near the physical pion mass is found to arise from an interplay between long- and short- distance physics.Comment: 21 pages, LaTeX, 7 figure

    Right Handed Weak Currents in Sum Rules for Axialvector Constant Renormalization

    Get PDF
    The recent experimental results on deep inelastic polarized lepton scattering off proton, deuteron and 3^{3}He together with polari% zed neutron β\beta-decay data are analyzed. It is shown that the problem of Ellis-Jaffe and Bjorken sum rules deficiency and the neutron paradox could be solved simultaneously by assuming the small right handed current (RHC) admixture in the weak interaction Lagrangian. The possible RHC impact on pion-nucleon σ\sigma-term and Gamow-Teller sum rule for (p,n)(p,n) nuclear reactions is pointed out.Comment: to be published in Phys. Rev. Lett. LaTeX, 8 pages, 21 k

    Further functional determinants

    Get PDF
    Functional determinants for the scalar Laplacian on spherical caps and slices, flat balls, shells and generalised cylinders are evaluated in two, three and four dimensions using conformal techniques. Both Dirichlet and Robin boundary conditions are allowed for. Some effects of non-smooth boundaries are discussed; in particular the 3-hemiball and the 3-hemishell are considered. The edge and vertex contributions to the C3/2C_{3/2} coefficient are examined.Comment: 25 p,JyTex,5 figs. on request

    Chiral Multiplets of Large-N Ground State Baryons

    Full text link
    I show that in the large-N limit the ground state baryons with helicity h fall into an ((N-2h)/4,(N+2h)/4) irreducible representation of SU(2)XSU(2). This representation determines the absolute normalization of the ground state baryon axial vector couplings at large-N. Results map precisely to (spin-flavor) SU(4) results. For instance, I find g_A =(N+2)/3. As a consequence of this multiplet structure, chiral symmetry forbids pion transitions between the ground state baryons and other baryon towers in the large-N limit.Comment: 6 pages TeX and mtexsis.te

    Energy States of Colored Particle in a Chromomagnetic Field

    Get PDF
    The unitary transformation, which diagonalizes squared Dirac equation in a constant chromomagnetic field is found. Applying this transformation, we find the eigenfunctions of diagonalized Hamiltonian, that describe the states with definite value of energy and call them energy states. It is pointed out that, the energy states are determined by the color interaction term of the particle with the background chromofield and this term is responsible for the splitting of the energy spectrum. We construct supercharge operators for the diagonal Hamiltonian, that ensure the superpartner property of the energy states.Comment: 25 pages, some calculation details have been removed, typos correcte
    corecore