2,451 research outputs found

    Crossover from Kramers to phase-diffusion switching in hysteretic DC-SQUIDs

    Full text link
    We have measured and propose a model for switching rates in hysteretic DC-SQUID in the regime where phase diffusion processes start to occur. We show that the switching rates in this regime are smaller than the rates given by Kramers' formula due to retrapping of Josephson phase. The retrapping process, which is affected by the frequency dependent impedance of the environment of the DC-SQUID, leads to a peaked second moment of the switching distribution as a function of temperature. The temperature where the peaks occur are proportional to the critical current of the DC- SQUID.Comment: 4 pages, 4 figure

    Self-contained Kondo effect in single molecules

    Full text link
    Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems(metallocenes). Evidence for Kondo coupling in Ce(C8H8)2 (cerocene) and the ytterbocene Cp*2Yb(bipy) is reported from magnetic susceptibility and L_III-edge x-ray absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this often-ignored contribution to bonding in organometallics.Comment: 4 pages, 5 figures (eps

    Action of liproprotein lipase on apoprotein-depleted chylomicrons

    Full text link

    THEORY OF PHASE-LOCKING IN SMALL JOSEPHSON JUNCTION CELLS

    Full text link
    Within the RSJ model, we performed a theoretical analysis of phase-locking in elementary strongly coupled Josephson junction cells. For this purpose, we developed a systematic method allowing the investigation of phase-locking in cells with small but non-vanishing loop inductance.The voltages across the junctions are found to be locked with very small phase difference for almost all values of external flux. However, the general behavior of phase-locking is found to be just contrary to that according to weak coupling. In case of strong coupling there is nearly no influence of external magnetic flux on the phases, but the locking-frequency becomes flux-dependent. The influence of parameter splitting is considered as well as the effect of small capacitive shunting of the junctions. Strongly coupled cells show synchronization even for large parameter splitting. Finally, a study of the behavior under external microwave radiation shows that the frequency locking-range becomes strongly flux-dependent, whereas the locking frequency itself turns out to be flux-independent.Comment: 26 pages, REVTEX, 9 PS figures appended in uuencoded form at the end, submitted to Phys. Rev. B
    • …
    corecore