898 research outputs found

    Coherent Collisions between Bose-Einstein Condensates

    Full text link
    We study the non-degenerate parametric amplifier for matter waves, implemented by colliding two Bose-Einstein condensates. The coherence of the amplified waves is shown by observing high contrast interference with a reference wave and by reversing the amplification process. Since our experiments also place limits on all known sources of decoherence, we infer that relative number squeezing is most likely present between the amplified modes. Finally, we suggest that reversal of the amplification process may be used to detect relative number squeezing without requiring single-particle detection.Comment: 4.2 pages, 4 figures, please take postscript version for best quality of picture

    Nonnormal amplification in random balanced neuronal networks

    Get PDF
    In dynamical models of cortical networks, the recurrent connectivity can amplify the input given to the network in two distinct ways. One is induced by the presence of near-critical eigenvalues in the connectivity matrix W, producing large but slow activity fluctuations along the corresponding eigenvectors (dynamical slowing). The other relies on W being nonnormal, which allows the network activity to make large but fast excursions along specific directions. Here we investigate the tradeoff between nonnormal amplification and dynamical slowing in the spontaneous activity of large random neuronal networks composed of excitatory and inhibitory neurons. We use a Schur decomposition of W to separate the two amplification mechanisms. Assuming linear stochastic dynamics, we derive an exact expression for the expected amount of purely nonnormal amplification. We find that amplification is very limited if dynamical slowing must be kept weak. We conclude that, to achieve strong transient amplification with little slowing, the connectivity must be structured. We show that unidirectional connections between neurons of the same type together with reciprocal connections between neurons of different types, allow for amplification already in the fast dynamical regime. Finally, our results also shed light on the differences between balanced networks in which inhibition exactly cancels excitation, and those where inhibition dominates.Comment: 13 pages, 7 figure

    Developmental depression-to-facilitation shift controls excitation-inhibition balance

    Get PDF
    Changes in the short-term dynamics of excitatory synapses over development have been observed throughout cortex, but their purpose and consequences remain unclear. Here, we propose that developmental changes in synaptic dynamics buffer the effect of slow inhibitory long-term plasticity, allowing for continuously stable neural activity. Using computational modeling we demonstrate that early in development excitatory short-term depression quickly stabilises neural activity, even in the face of strong, unbalanced excitation. We introduce a model of the commonly observed developmental shift from depression to facilitation and show that neural activity remains stable throughout development, while inhibitory synaptic plasticity slowly balances excitation, consistent with experimental observations. Our model predicts changes in the input responses from phasic to phasic-and-tonic and more precise spike timings. We also observe a gradual emergence of short-lasting memory traces governed by short-term plasticity development. We conclude that the developmental depression-to-facilitation shift may control excitation-inhibition balance throughout development with important functional consequences

    Network Middleware for enterprise enhanced operation

    Get PDF

    Large atom number Bose-Einstein condensate of sodium

    Get PDF
    We describe the setup to create a large Bose-Einstein condensate containing more than 120x10^6 atoms. In the experiment a thermal beam is slowed by a Zeeman slower and captured in a dark-spot magneto-optical trap (MOT). A typical dark-spot MOT in our experiments contains 2.0x10^10 atoms with a temperature of 320 microK and a density of about 1.0x10^11 atoms/cm^3. The sample is spin polarized in a high magnetic field, before the atoms are loaded in the magnetic trap. Spin polarizing in a high magnetic field results in an increase in the transfer efficiency by a factor of 2 compared to experiments without spin polarizing. In the magnetic trap the cloud is cooled to degeneracy in 50 s by evaporative cooling. To suppress the 3-body losses at the end of the evaporation the magnetic trap is decompressed in the axial direction.Comment: 11 pages, 12 figures, submitted to Review Of Scientific Instrument

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-- trained using model simulations-- to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Eventual Consistency

    Get PDF
    International audienceIn a replicated database, the consistency level defines whether and how the values of the replicas of a logical object may diverge in the presence of updates. Eventual consistency is the weakest consistency level that guarantees convergence. Informally, it requires that all replicas of an object will eventually reach the same final value, assuming that no new updates are submitted to the object

    Experimental observation of the Bogoliubov transformation for a Bose-Einstein condensed gas

    Full text link
    Phonons with wavevector q/â„Źq/\hbar were optically imprinted into a Bose-Einstein condensate. Their momentum distribution was analyzed using Bragg spectroscopy with a high momentum transfer. The wavefunction of the phonons was shown to be a superposition of +q and -q free particle momentum states, in agreement with the Bogoliubov quasiparticle picture.Comment: 4 pages, 3 figures, please take postscript version for the best version of Fig
    • …
    corecore