7,394 research outputs found

    Evolution of Fermion Pairing from Three to Two Dimensions

    Full text link
    We follow the evolution of fermion pairing in the dimensional crossover from 3D to 2D as a strongly interacting Fermi gas of 6^6Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the BCS-side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the 2D limit, the zero-temperature mean-field BEC-BCS theory.Comment: 5 pages, 4 figure

    Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas

    Full text link
    The coupling of the spin of electrons to their motional state lies at the heart of recently discovered topological phases of matter. Here we create and detect spin-orbit coupling in an atomic Fermi gas, a highly controllable form of quantum degenerate matter. We reveal the spin-orbit gap via spin-injection spectroscopy, which characterizes the energy-momentum dispersion and spin composition of the quantum states. For energies within the spin-orbit gap, the system acts as a spin diode. To fully inhibit transport, we open an additional spin gap, thereby creating a spin-orbit coupled lattice whose spinful band structure we probe. In the presence of s-wave interactions, such systems should display induced p-wave pairing, topological superfluidity, and Majorana edge states

    Magnon Dispersion in the Field-Induced Magnetically Ordered Phase of TlCuCl3

    Full text link
    The magnetic properties of the interacting dimer system TlCuCl3 are investigated within a bond-operator formulation. The observed field-induced staggered magnetic order perpendicular to the field is described as a Bose condensation of magnons which are linear combinations of dimer singlet and triplet modes. This technique accounts for the magnetization curve and for the field dependence of the magnon dispersion curves observed by high-field neutron scattering measurements.Comment: 4 pages, 4 figures, REVTeX

    Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments

    Full text link
    We create fermionic dipolar 23^{23}Na6^6Li molecules in their triplet ground state from an ultracold mixture of 23^{23}Na and 6^6Li. Using magneto-association across a narrow Feshbach resonance followed by a two-photon STIRAP transfer to the triplet ground state, we produce 3×1043\,{\times}\,10^4 ground state molecules in a spin-polarized state. We observe a lifetime of 4.6s4.6\,\text{s} in an isolated molecular sample, approaching the pp-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.Comment: 5 pages, 5 figure

    Scaling of gauge balls and static potential in the confinement phase of the pure U(1) lattice gauge theory

    Get PDF
    We investigate the scaling behaviour of gauge-ball masses and static potential in the pure U(1) lattice gauge theory on toroidal lattices. An extended gauge field action P(βcosΘP+γcos2ΘP)-\sum_P(\beta \cos\Theta_P + \gamma \cos2\Theta_P) is used with γ=0.2\gamma= -0.2 and -0.5. Gauge-ball correlation functions with all possible lattice quantum numbers are calculated. Most gauge-ball masses scale with the non-Gaussian exponent νng0.36\nu_{ng}\approx 0.36. The A1++A_1^{++} gauge-ball mass scales with the Gaussian value νg0.5\nu_{g} \approx 0.5 in the investigated range of correlation lengths. The static potential is examined with Sommer's method. The long range part scales consistently with νng\nu_{ng} but the short range part tends to yield smaller values of ν\nu. The β\beta-function, having a UV stable zero, is obtained from the running coupling. These results hold for both γ\gamma values, supporting universality. Consequences for the continuum limit of the theory are discussed.Comment: Contribution to the Lattice 97 proceedings, LaTeX, 3 pages, 3 figure

    Retinal oscillations carry visual information to cortex

    Get PDF
    Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the image over time. The other operates in the gamma frequency band (40-80 Hz) and is encoded by spike time relative to the retinal oscillations. Because these oscillations involve extensive areas of the retina, it is likely that the second channel transmits information about global features of the visual scene. At times, the second channel conveyed even more information than the first.Comment: 21 pages, 10 figures, submitted to Frontiers in Systems Neuroscienc
    corecore