21 research outputs found

    On certain classes of solutions of the Weierstrass-Enneper system inducing constant mean curvature surfaces

    Full text link
    Analysis of the generalized Weierstrass-Enneper system includes the estimation of the degree of indeterminancy of the general analytic solution and the discussion of the boundary value problem. Several different procedures for constructing certain classes of solutions to this system, including potential, harmonic and separable types of solutions, are proposed. A technique for reduction of the Weierstrass-Enneper system to decoupled linear equations, by subjecting it to certain differential constraints, is presented as well. New elementary and doubly periodic solutions are found, among them kinks, bumps and multi-soliton solutions

    Significant Conditions on the Two-electron Reduced Density Matrix from the Constructive Solution of N-representability

    Full text link
    We recently presented a constructive solution to the N-representability problem of the two-electron reduced density matrix (2-RDM)---a systematic approach to constructing complete conditions to ensure that the 2-RDM represents a realistic N-electron quantum system [D. A. Mazziotti, Phys. Rev. Lett. 108, 263002 (2012)]. In this paper we provide additional details and derive further N-representability conditions on the 2-RDM that follow from the constructive solution. The resulting conditions can be classified into a hierarchy of constraints, known as the (2,q)-positivity conditions where the q indicates their derivation from the nonnegativity of q-body operators. In addition to the known T1 and T2 conditions, we derive a new class of (2,3)-positivity conditions. We also derive 3 classes of (2,4)-positivity conditions, 6 classes of (2,5)-positivity conditions, and 24 classes of (2,6)-positivity conditions. The constraints obtained can be divided into two general types: (i) lifting conditions, that is conditions which arise from lifting lower (2,q)-positivity conditions to higher (2,q+1)-positivity conditions and (ii) pure conditions, that is conditions which cannot be derived from a simple lifting of the lower conditions. All of the lifting conditions and the pure (2,q)-positivity conditions for q>3 require tensor decompositions of the coefficients in the model Hamiltonians. Subsets of the new N-representability conditions can be employed with the previously known conditions to achieve polynomially scaling calculations of ground-state energies and 2-RDMs of many-electron quantum systems even in the presence of strong electron correlation

    Holonomy groups and W-symmetries

    Full text link
    Irreducible sigma models, i.e. those for which the partition function does not factorise, are defined on Riemannian spaces with irreducible holonomy groups. These special geometries are characterised by the existence of covariantly constant forms which in turn give rise to symmetries of the supersymmetric sigma model actions. The Poisson bracket algebra of the corresponding currents is a W-algebra. Extended supersymmetries arise as special cases.Comment: pages 2
    corecore