186 research outputs found

    Gravitational Wave Signals from Chaotic System: A Point Mass with A Disk

    Full text link
    We study gravitational waves from a particle moving around a system of a point mass with a disk in Newtonian gravitational theory. A particle motion in this system can be chaotic when the gravitational contribution from a surface density of a disk is comparable with that from a point mass. In such an orbit, we sometimes find that there appears a phase of the orbit in which particle motion becomes to be nearly regular (the so-called ``stagnant motion'') for a finite time interval between more strongly chaotic phases. To study how these different chaotic behaviours affect on observation of gravitational waves, we investigate a correlation of the particle motion and the waves. We find that such a difference in chaotic motions reflects on the wave forms and energy spectra. The character of the waves in the stagnant motion is quite different from that either in a regular motion or in a more strongly chaotic motion. This suggests that we may make a distinction between different chaotic behaviours of the orbit via the gravitational waves.Comment: Published in Phys.Rev.D76:024018,200

    Universality of power law correlations in gravitational clustering

    Get PDF
    We present an analysis of different sets of gravitational N-body simulations, all describing the dynamics of discrete particles with a small initial velocity dispersion. They encompass very different initial particle configurations, different numerical algorithms for the computation of the force, with or without the space expansion of cosmological models. Despite these differences we find in all cases that the non-linear clustering which results is essentially the same, with a well-defined simple power-law behaviour in the two-point correlations in the range from a few times the lower cut-off in the gravitational force to the scale at which fluctuations are of order one. We argue, presenting quantitative evidence, that this apparently universal behaviour can be understood by the domination of the small scale contribution to the gravitational force, coming initially from nearest neighbor particles.Comment: 7 pages, latex, 3 postscript figures. Revised version to be published in Europhysics Letters. Contains additional analysis showing more directly the central role of nearest neighbour interactions in the development of power-law correlation

    A new algorithm for anisotropic solutions

    Full text link
    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.Comment: 16 pages, to appear in Pramana - J. Phy

    Gravitational dynamics of an infinite shuffled lattice: early time evolution and universality of non-linear correlations

    Full text link
    In two recent articles a detailed study has been presented of the out of equilibrium dynamics of an infinite system of self-gravitating points initially located on a randomly perturbed lattice. In this article we extend the treatment of the early time phase during which strong non-linear correlations first develop, prior to the onset of ``self-similar'' scaling in the two point correlation function. We establish more directly, using appropriate modifications of the numerical integration, that the development of these correlations can be well described by an approximation of the evolution in two phases: a first perturbative phase in which particles' displacements are small compared to the lattice spacing, and a subsequent phase in which particles interact only with their nearest neighbor. For the range of initial amplitudes considered we show that the first phase can be well approximated as a transformation of the perturbed lattice configuration into a Poisson distribution at the relevant scales. This appears to explain the ``universality'' of the spatial dependence of the asymptotic non-linear clustering observed from both shuffled lattice and Poisson initial conditions.Comment: 11 pages, 11 figures, shortened introductory sections and other minor modifications, version to appear in Phys. Rev.

    Clustering in gravitating N-body systems

    Full text link
    We study gravitational clustering of mass points in three dimensions with random initial positions and periodic boundary conditions (no expansion) by numerical simulations. Correlation properties are well defined in the system and a sort of thermodynamic limit can be defined for the transient regime of cluste ring. Structure formation proceeds along two paths: (i) fluid-like evolution of density perturbations at large scales and (ii) shift of the granular (non fluid) properties from small to large scales. The latter mechanism finally dominates at all scales and it is responsible for the self-similar characteristics of the clustering.Comment: 7 pages, 3 figures. Accepted for publication in Europhys. Let

    Anisotropic static solutions in modelling highly compact bodies

    Full text link
    Einstein field equations for anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case μr2\mu\propto r^{-2} for the energy density which arises in many astrophysical applications. In the second class the singularity at the center of the star is not present in the energy density. The models presented in this paper allow for increasing and decreasing profiles in the behavior of the energy density.Comment: 9 pages, to appear in Pramana - J. Phy

    Clustering of Primordial Black Holes. II. Evolution of Bound Systems

    Full text link
    Primordial Black Holes (PBHs) that form from the collapse of density perturbations are more clustered than the underlying density field. In a previous paper, we showed the constraints that this has on the prospects of PBH dark matter. In this paper we examine another consequence of this clustering: the formation of bound systems of PBHs in the early universe. These would hypothetically be the earliest gravitationally collapsed structures, forming when the universe is still radiation dominated. Depending upon the size and occupation of the clusters, PBH merging occurs before they would have otherwise evaporated due to Hawking evaporation.Comment: 23 pages, 1 figure. Submitted to PR

    Free streaming in mixed dark matter

    Full text link
    Free streaming in a \emph{mixture} of collisionless non-relativistic dark matter (DM) particles is studied by implementing methods from the theory of multicomponent plasmas. The mixture includes Fermionic, condensed and non condensed Bosonic particles decoupling in equilibrium while relativistic, heavy non-relativistic thermal relics (WIMPs), and sterile neutrinos that decouple \emph{out of equilibrium} when they are relativistic. The free-streaming length λfs\lambda_{fs} is obtained from the marginal zero of the gravitational polarization function, which separates short wavelength Landau-damped from long wavelength Jeans-unstable \emph{collective} modes. At redshift zz we find 1λfs2(z)=1(1+z)[0.071kpc]2aνagd,a2/3(ma/keV)2Ia \frac{1}{\lambda^2_{fs}(z)}= \frac{1}{(1+z)} \big[\frac{0.071}{\textrm{kpc}} \big]^2 \sum_{a}\nu_a g^{2/3}_{d,a}({m_a}/{\mathrm{keV}})^2 I_a ,where 0νa10\leq \nu_a \leq 1 are the \emph{fractions} of the respective DM components of mass mam_a that decouple when the effective number of ultrarelativistic degrees of freedom is gd,ag_{d,a}, and IaI_a only depend on the distribution functions at decoupling, given explicitly in all cases. If sterile neutrinos produced either resonantly or non-resonantly that decouple near the QCD scale are the \emph{only} DM component,we find λfs(0)7kpc(keV/m)\lambda_{fs}(0) \simeq 7 \mathrm{kpc} (\mathrm{keV}/m) (non-resonant), λfs(0)1.73kpc(keV/m)\lambda_{fs}(0) \simeq 1.73 \mathrm{kpc} (\mathrm{keV}/m) (resonant).If WIMPs with mwimp100GeVm_{wimp} \gtrsim 100 \mathrm{GeV} decoupling at Td10MeVT_d \gtrsim 10 \mathrm{MeV} are present in the mixture with νwimp1012\nu_{wimp} \gg 10^{-12},λfs(0)6.5×103pc\lambda_{fs}(0) \lesssim 6.5 \times 10^{-3} \mathrm{pc} is \emph{dominated} by CDM. If a Bose Einstein condensate is a DM component its free streaming length is consistent with CDM because of the infrared enhancement of the distribution function.Comment: 19 pages, 2 figures. More discussions same conclusions and results. Version to appear in Phys. Rev.

    Inhomogeneous imperfect fluid spherical models without Big-Bang singularity

    Get PDF
    So far all known singularity-free cosmological models are cylindrically symmetric. Here we present a new family of spherically symmetric non-singular models filled with imperfect fluid and radial heat flow, and satisfying the weak and strong energy conditions. For large tt anisotropy in pressure and heat flux tend to vanish leading to a perfect fluid. There is a free function of time in the model, which can be suitably chosen for non-singular behaviour and there exist multiplicity of such choices.Comment: 8 pages, LaTeX versio
    corecore