36 research outputs found

    Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires

    Full text link
    The thermal conductivity of silicon nanowires (SiNWs) is investigated by molecular dynamics (MD) simulation. It is found that the thermal conductivity of SiNWs can be reduced exponentially by isotopic defects at room temperature. The thermal conductivity reaches the minimum, which is about 27% of that of pure 28Si NW, when doped with fifty percent isotope atoms. The thermal conductivity of isotopic-superlattice structured SiNWs depends clearly on the period of superlattice. At a critical period of 1.09 nm, the thermal conductivity is only 25% of the value of pure Si NW. An anomalous enhancement of thermal conductivity is observed when the superlattice period is smaller than this critical length. The ultra-low thermal conductivity of superlattice structured SiNWs is explained with phonon spectrum theory.Comment: Nano Lett., ASAP Article 10.1021/nl0725998 S1530-6984(07)02599-4 Web Release Date: December 21, 200

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
    corecore