5 research outputs found

    55 dB High Gain L-Band EDFA Utilizing Single Pump Source

    Get PDF
    In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression

    55 dB High Gain L-Band EDFA Utilizing Single Pump Source

    Get PDF
    In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression

    56.6 dB high gain L-band EDFA utilizing short-length highly-doped erbium rare-earth material

    Get PDF
    In this paper, we experimentally investigate the performance of an efficient high gain L-band erbium-doped fiber (EDF) amplifier structure utilizing short-length highly-doped erbium rare-earth material with a single pump source. The amplifier gain and noise figure variation for different amplifier structures have been investigated. A filter is used to reduce the self-saturation effect and suppress the C-band amplified spontaneous emission (ASE) noise. The amplifier achieves a signal gain of 56.6 dB with a low noise figure of 4.8 dB at -50 dBm input signal power using only 8 m of EDF length. The amplifier gain shows significant improvement of 6 dB with C/L band coupler and 13 dB with tunable-band pass filter compared to amplifier structure without ASE suppression

    55 dB High Gain L-Band EDFA Utilizing Single Pump Source

    No full text
    In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression
    corecore