189 research outputs found

    Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions

    Full text link
    The non-Newtonian behavior of a monodisperse concentrated dispersion of spherical particles was investigated using a direct numerical simulation method, that takes into account hydrodynamic interactions and thermal fluctuations accurately. Simulations were performed under steady shear flow with periodic boundary conditions in the three directions. The apparent shear viscosity of the dispersions was calculated at volume fractions ranging from 0.31 to 0.56. Shear-thinning behavior was clearly observed at high volume fractions. The low- and high-limiting viscosities were then estimated from the apparent viscosity by fitting these data into a semi-empirical formula. Furthermore, the short-time motions were examined for Brownian particles fluctuating in concentrated dispersions, for which the fluid inertia plays an important role. The mean square displacement was monitored in the vorticity direction at several different Peclet numbers and volume fractions so that the particle diffusion coefficient is determined from the long-time behavior of the mean square displacement. Finally, the relationship between the non-Newtonian viscosity of the dispersions and the structural relaxation of the dispersed Brownian particles is examined

    The Minimum Total Mass of MACHOs and Halo Models of the Galaxy

    Get PDF
    If the density distribution \rho (r) of MACHOs is spherically symmetric with respect to the Galactic center, it is shown that the minimal total mass M_{min}^{{ MACHO}} of the MACHOs is 1.7\times 10^{10}\sol \tau_{-6.7}^{{ LMC}} where \tau_{-6.7}^{{ LMC}} is the optical depth (\tau^{{ LMC}}) toward the Large Magellanic Cloud (LMC) in the unit of 2\times 10^{-7}. If \rho (r) is a decreasing function of r, it is proved that M_{min}^{{ MACHO}} is 5.6\times 10^{10}\sol \tau_{-6.7}^{{ LMC}}. Several spherical and axially symmetric halo models of the Galaxy with a few free parameters are also considered. It is found that M_{min}^{{ MACHO}} ranges from 5.6\times 10^{10}\sol \tau_{-6.7}^{{ LMC}} to \sim 3 \times 10^{11}\sol \tau_{-6.7}^{{ LMC}}. For general case, the minimal column density \Sigma_{min}^{{ MACHO}} of MACHOs is obtained as \Sigma_{min}^{{ MACHO}} =25 \sol { pc}^{-2}\tau_{-6.7}^{{ LMC}}. If the clump of MACHOs exist only halfway between LMC and the sun, M_{min}^{{ MACHO}} is 1.5\times 10^9\sol. This shows that the total mass of MACHOs is smaller than 5 \times 10^{10}\sol , i.e. \sim 10\% of the mass of the halo inside LMC, either if the density distribution of MACHOs is unusual or \tau^{{ LMC}}\ll 2\times 10^{-7}.Comment: 5 pages, 5 Encapsulated PostScript figures, Latex, Accepted for publication in Apj. Letter

    A Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions

    Get PDF
    A new computational method is presented to resolve hydrodynamic interactions acting on solid particles immersed in incompressible host fluids. In this method, boundaries between solid particles and host fluids are replaced with a continuous interface by assuming a smoothed profile. This enabled us to calculate hydrodynamic interactions both efficiently and accurately, without neglecting many-body interactions. The validity of the method was tested by calculating the drag force acting on a single cylindrical rod moving in an incompressible Newtonian fluid. This method was then applied in order to simulate sedimentation process of colloidal dispersions.Comment: 7pages, 7 figure

    Direct Numerical Simulations of Electrophoresis of Charged Colloids

    Get PDF
    We propose a numerical method to simulate electrohydrodynamic phenomena in charged colloidal dispersions. This method enables us to compute the time evolutions of colloidal particles, ions, and host fluids simultaneously by solving Newton, advection-diffusion, and Navier--Stokes equations so that the electrohydrodynamic couplings can be fully taken into account. The electrophoretic mobilities of charged spherical particles are calculated in several situations. The comparisons with approximation theories show quantitative agreements for dilute dispersions without any empirical parameters, however, our simulation predicts notable deviations in the case of dense dispersions.Comment: 4pages, 3figures, to appear in Phys. Rev. Let

    Multiscale modeling and simulation for polymer melt flows between parallel plates

    Get PDF
    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, visco-elastic liquid, and visco-elastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR1\omega\tau^R\lesssim 1, and the crossover between the liquid-like and solid-like regime takes place around ωτα1\omega\tau^\alpha\simeq 1 (where ω\omega is the angular frequency of the plate and τR\tau^R and τα\tau^\alpha are Rouse and α\alpha relaxation time, respectively).Comment: 13pages, 12figure

    Mechanism of Magnetic Flux Loss in Molecular Clouds

    Full text link
    We investigate the detailed processes working in the drift of magnetic fields in molecular clouds. To the frictional force, whereby the magnetic force is transmitted to neutral molecules, ions contribute more than half only at cloud densities nH<104cm3n_{\rm H} < 10^4 {\rm cm}^{-3}, and charged grains contribute more than 90% at nH>106cm3n_{\rm H} > 10^6 {\rm cm}^{-3}. Thus grains play a decisive role in the process of magnetic flux loss. Approximating the flux loss time tBt_B by a power law tBBγt_B \propto B^{-\gamma}, where BB is the mean field strength in the cloud, we find γ2\gamma \approx 2, characteristic to ambipolar diffusion, only at nH<107cm3n_{\rm H} < 10^7 {\rm cm}^{-3}. At higher densities, γ\gamma decreases steeply with nHn_{\rm H}, and finally at nHndecafew×1011cm3n_{\rm H} \approx n_{\rm dec} \approx {\rm a few} \times 10^{11} {\rm cm}^{-3}, where magnetic fields effectively decouple from the gas, γ<<1\gamma << 1 is attained, reminiscent of Ohmic dissipation, though flux loss occurs about 10 times faster than by Ohmic dissipation. Ohmic dissipation is dominant only at nH>1×1012cm3n_{\rm H} > 1 \times 10^{12} {\rm cm}^{-3}. While ions and electrons drift in the direction of magnetic force at all densities, grains of opposite charges drift in opposite directions at high densities, where grains are major contributors to the frictional force. Although magnetic flux loss occurs significantly faster than by Ohmic dissipation even at very high densities as nHndecn_{\rm H} \approx n_{\rm dec}, the process going on at high densities is quite different from ambipolar diffusion in which particles of opposite charges are supposed to drift as one unit.Comment: 34 pages including 9 postscript figures, LaTex, accepted by Astrophysical Journal (vol.573, No.1, July 1, 2002

    Synaptically activated burst-generating conductances may underlie a group-pacemaker mechanism for respiratory rhythm generation in mammals

    Get PDF
    Breathing, chewing, and walking are critical life-sustaining behaviors in mammals that consist essentially of simple rhythmic movements. Breathing movements in particular involve the diaphragm, thorax, and airways but emanate from a network in the lower brain stem. This network can be studied in reduced preparations in vitro and using simplified mathematical models that make testable predictions. An iterative approach that employs both in vitro and in silico models argues against canonical mechanisms for respiratory rhythm in neonatal rodents that involve reciprocal inhibition and pacemaker properties. We present an alternative model in which emergent network properties play a rhythmogenic role. Specifically, we show evidence that synaptically activated burst-generating conductances-which are only available in the context of network activity-engender robust periodic bursts in respiratory neurons. Because the cellular burst-generating mechanism is linked to network synaptic drive we dub this type of system a group pacemaker. © 2010 Elsevier B.V

    Apparent finite-size effects in the dynamics of supercooled liquids

    Get PDF
    Molecular dynamics simulations are performed for a supercooled simple liquid with changing the system size from N=108 to 10410^4 to examine possible finite-size effects. Although almost no systematic deviation is detected in the static pair correlation functions, it is demonstrated that the structural α\alpha relaxation in a small system becomes considerably slower than that in larger systems for temperatures below TcT_c at which the size of the cooperative particle motions becomes comparable to the unit cell length of the small system. The discrepancy increases with decreasing temperature.Comment: 4 pages 5 figure

    Heterogeneous Diffusion in Highly Supercooled Liquids

    Full text link
    The diffusivity of tagged particles is demonstrated to be very heterogeneous on time scales comparable to or shorter than the α\alpha relaxation time τα\tau_{\alpha} (\cong the stress relaxation time) in a highly supercooled liquid via 3D molecular dynamics simulation. The particle motions in the relatively active regions dominantly contribute to the mean square displacement, giving rise to a diffusion constant systematically larger than the Einstein-Stokes value. The van Hove self-correlation function Gs(r,t)G_s(r,t) is shown to have a long distance tail which can be scaled in terms of r/t1/2r/t^{1/2} for t \ls 3\tau_{\alpha}. Its presence indicates heterogeneous diffusion in the active regions. However, the diffusion process eventually becomes homogeneous on time scales longer than the life time of the heterogeneity structure (3τα\sim 3 \tau_{\alpha}).Comment: 4 pages, 5 figure

    A Smooth Interface Method for Simulating Liquid Crystal Colloid Dispersions

    Full text link
    A new method is presented for mesoscopic simulations of particle dispersions in liquid crystal solvents. It allows efficient first-principle simulations of the dispersions involving many particles with many-body interactions mediated by the solvents. Demonstrations have been performed for the aggregation of colloid dispersions in two-dimensional nematic and smectic-C* solvents neglecting hydrodynamic effects, which will be taken into account in the near future.Comment: 13 pages, 4 figure
    corecore