177 research outputs found

    Nucleon, Δ\Delta and Ω\Omega excited states in Nf=2+1N_f=2+1 lattice QCD

    Full text link
    The energies of the excited states of the Nucleon, Δ\Delta and Ω\Omega are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses mπm_{\pi} = 392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we find reasonable agreement in the pattern of states. The need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified.Comment: Revised for publication. References added, Table VI expanded to add strange baryon multiparticle thresholds and multiparticle thresholds added to Figs. 4, 5 and 6. 15 pages, 6 figure

    Comment on the "Coupling Constant and Quark Loop Expansion for Corrections to the Valence Appeoximation" by Lee and Weingarten

    Get PDF
    Lee and Weingarten have recently criticized our calculation of quarkonium and glueball scalars as being "incomplete" and "incorrect". Here we explain the relation of our calculations to full QCD.Comment: 5 pages,2 epsfigs. Submitted to the Comment section of Phys. Rev. D 28th April 199

    Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

    Get PDF
    OBJECTIVE: This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness. BACKGROUND: Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice. METHOD: We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or all of the postural reflexes either in Earth's gravity or in microgravitational environments. Studies testing the function of each postural component, as well as those discussing postural reflex interactions, were also included in this review. DISCUSSION: It is quite apparent from the indexed literature we searched that posture is largely maintained by reflexive, involuntary control. While reflexive components for postural control are found in skin and joint receptors, somatic graviceptors, and baroreceptors throughout the body, much of the reflexive postural control mechanisms are housed, or occur, within the head and neck region primarily. We suggest that the postural reflexes may function in a hierarchical fashion. This hierarchy may well be based on the gravity-dependent or gravity-independent nature of each postural reflex. Some or all of these postural reflexes may contribute to the development of a postural body scheme, a conceptual internal representation of the external environment under normal gravity. This model may be the framework through which the postural reflexes anticipate and adapt to new gravitational environments. CONCLUSION: Visual and vestibular input, as well as joint and soft tissue mechanoreceptors, are major players in the regulation of static upright posture. Each of these input sources detects and responds to specific types of postural stimulus and perturbations, and each region has specific pathways by which it communicates with other postural reflexes, as well as higher central nervous system structures. This review of the postural reflex structures and mechanisms adds to the growing body of posture rehabilitation literature relating specifically to chiropractic treatment. Chiropractic interest in these reflexes may enhance the ability of chiropractic physicians to treat and correct global spine and posture disorders. With the knowledge and understanding of these postural reflexes, chiropractors can evaluate spinal configurations not only from a segmental perspective, but can also determine how spinal dysfunction may be the ultimate consequence of maintaining an upright posture in the presence of other postural deficits. These perspectives need to be explored in more detail

    On the glueball spectrum in O(a)-improved lattice QCD

    Full text link
    We calculate the light `glueball' mass spectrum in N_f=2 lattice QCD using a fermion action that is non-perturbatively O(a) improved. We work at lattice spacings a ~0.1 fm and with quark masses that range down to about half the strange quark mass. We find the statistical errors to be moderate and under control on relatively small ensembles. We compare our mass spectrum to that of quenched QCD at the same value of a. Whilst the tensor mass is the same (within errors), the scalar mass is significantly smaller in the dynamical lattice theory, by a factor of ~(0.84 +/- 0.03). We discuss what the observed m_q dependence of this suppression tells us about the dynamics of glueballs in QCD. We also calculate the masses of flux tubes that wind around the spatial torus, and extract the string tension from these. As we decrease the quark mass we see a small but growing vacuum expectation value for the corresponding flux tube operators. This provides clear evidence for `string breaking' and for the (expected) breaking of the associated gauge centre symmetry by sea quarks.Comment: 33pp LaTeX. Version to appear in Phys. Rev.

    CORE and the Haldane Conjecture

    Get PDF
    The Contractor Renormalization group formalism (CORE) is a real-space renormalization group method which is the Hamiltonian analogue of the Wilson exact renormalization group equations. In an earlier paper\cite{QGAF} I showed that the Contractor Renormalization group (CORE) method could be used to map a theory of free quarks, and quarks interacting with gluons, into a generalized frustrated Heisenberg antiferromagnet (HAF) and proposed using CORE methods to study these theories. Since generalizations of HAF's exhibit all sorts of subtle behavior which, from a continuum point of view, are related to topological properties of the theory, it is important to know that CORE can be used to extract this physics. In this paper I show that despite the folklore which asserts that all real-space renormalization group schemes are necessarily inaccurate, simple Contractor Renormalization group (CORE) computations can give highly accurate results even if one only keeps a small number of states per block and a few terms in the cluster expansion. In addition I argue that even very simple CORE computations give a much better qualitative understanding of the physics than naive renormalization group methods. In particular I show that the simplest CORE computation yields a first principles understanding of how the famous Haldane conjecture works for the case of the spin-1/2 and spin-1 HAF.Comment: 36 pages, 4 figures, 5 tables, latex; extensive additions to conten

    Fitting a sum of exponentials to lattice correlation functions using a non-uniform prior

    Full text link
    Excited states are extracted from lattice correlation functions using a non-uniform prior on the model parameters. Models for both a single exponential and a sum of exponentials are considered, as well as an alternate model for the orthogonalization of the correlation functions. Results from an analysis of torelon and glueball operators indicate the Bayesian methodology compares well with the usual interpretation of effective mass tables produced by a variational procedure. Applications of the methodology are discussed.Comment: 12 pages, 8 figures, 8 tables, major revision, final versio

    CORE Technology and Exact Hamiltonian Real-Space Renormalization Group Transformations

    Full text link
    The COntractor REnormalization group (CORE) method, a new approach to solving Hamiltonian lattice systems, is presented. The method defines a systematic and nonperturbative means of implementing Kadanoff-Wilson real-space renormalization group transformations using cluster expansion and contraction techniques. We illustrate the approach and demonstrate its effectiveness using scalar field theory, the Heisenberg antiferromagnetic chain, and the anisotropic Ising chain. Future applications to the Hubbard and t-J models and lattice gauge theory are discussed.Comment: 65 pages, 9 Postscript figures, uses epsf.st
    • …
    corecore