7,807 research outputs found

    Marangoni driven turbulence in high energy surface melting processes

    Full text link
    Experimental observations of high-energy surface melting processes, such as laser welding, have revealed unsteady, often violent, motion of the free surface of the melt pool. Surprisingly, no similar observations have been reported in numerical simulation studies of such flows. Moreover, the published simulation results fail to predict the post-solidification pool shape without adapting non-physical values for input parameters, suggesting the neglect of significant physics in the models employed. The experimentally observed violent flow surface instabilities, scaling analyses for the occurrence of turbulence in Marangoni driven flows, and the fact that in simulations transport coefficients generally have to be increased by an order of magnitude to match experimentally observed pool shapes, suggest the common assumption of laminar flow in the pool may not hold, and that the flow is actually turbulent. Here, we use direct numerical simulations (DNS) to investigate the role of turbulence in laser melting of a steel alloy with surface active elements. Our results reveal the presence of two competing vortices driven by thermocapillary forces towards a local surface tension maximum. The jet away from this location at the free surface, separating the two vortices, is found to be unstable and highly oscillatory, indeed leading to turbulence-like flow in the pool. The resulting additional heat transport, however, is insufficient to account for the observed differences in pool shapes between experiment and simulations

    Topological strings on noncommutative manifolds

    Get PDF
    We identify a deformation of the N=2 supersymmetric sigma model on a Calabi-Yau manifold X which has the same effect on B-branes as a noncommutative deformation of X. We show that for hyperkahler X such deformations allow one to interpolate continuously between the A-model and the B-model. For generic values of the noncommutativity and the B-field, properties of the topologically twisted sigma-models can be described in terms of generalized complex structures introduced by N. Hitchin. For example, we show that the path integral for the deformed sigma-model is localized on generalized holomorphic maps, whereas for the A-model and the B-model it is localized on holomorphic and constant maps, respectively. The geometry of topological D-branes is also best described using generalized complex structures. We also derive a constraint on the Chern character of topological D-branes, which includes A-branes and B-branes as special cases.Comment: 36 pages, AMS latex. v2: a reference to a related work has been added. v3: An error in the discussion of the Fourier-Mukai transform for twisted coherent sheaves has been fixed, resulting in several changes in Section 2. The rest of the paper is unaffected. v4: an incorrect statement concerning Lie algebroid cohomology has been fixe

    The structure of one-relator relative presentations and their centres

    Full text link
    Suppose that G is a nontrivial torsion-free group and w is a word in the alphabet G\cup\{x_1^{\pm1},...,x_n^{\pm1}\} such that the word w' obtained from w by erasing all letters belonging to G is not a proper power in the free group F(x_1,...,x_n). We show how to reduce the study of the relative presentation \^G= to the case n=1. It turns out that an "n-variable" group \^G can be constructed from similar "one-variable" groups using an explicit construction similar to wreath product. As an illustration, we prove that, for n>1, the centre of \^G is always trivial. For n=1, the centre of \^G is also almost always trivial; there are several exceptions, and all of them are known.Comment: 15 pages. A Russian version of this paper is at http://mech.math.msu.su/department/algebra/staff/klyachko/papers.htm . V4: the intoduction is rewritten; Section 1 is extended; a short introduction to Secton 5 is added; some misprints are corrected and some cosmetic improvements are mad

    The Ages and Abundances of the M87 Globular Clusters

    Get PDF
    A subset of 150 globular clusters in M87 has been selected on the basis of S/N ratio for abundance and age determinations from the sample of Paper I. Indices measuring the strength of the strongest spectral features were determined for the M87 GCs and from new data for twelve galactic GCs. Combining the new and existing data for the galactic GCs and comparing the (UR)(U-R) colors and the line indices gives qualitative indications for the ages and abundances of the GCs. Quantitative results are obtained by applying the Worthey (1994) models for the integrated light of stellar systems of a single age, calibrated by observations of galactic GCs, to deduce abundances and ages for the objects in our sample. We find that the M87 GCs span a wide range in metallicity, from very metal poor to somewhat above solar metallicity. The mean [Fe/H] of -0.95 dex is higher than that of the galactic GC system, and there is a metal rich tail that reaches to higher [Fe/H] than one finds among the galactic GCs. The mean metallicity of the M87 GC system is about a factor of four lower than that of the M87 stellar halo at a fixed projected radius RR. The metallicity inferred from the X-ray studies is similar to that of the M87 stellar halo, not to that of GCs. We infer the relative abundances of Na, Mg, and Fe in the M87 GCs from the strength of their spectral features. The behavior of these elements between the metal rich and metal poor M87 GCs is similar to that shown by the galactic GCs and by halo stars in the Galaxy. The pattern of chemical evolution in these disparate old stellar systems is indistinguishable. We obtain a median age for the M87 GC system of 13 Gyr, similar to that of the galactic GCs, with a small dispersion about this value.Comment: 56 pages with included postscript figures; added derived M87 GC metallicities to Table 2, a statistical analysis of possible bimodality, an appendix on the metallicity calibration of U-R and the Washington system, and other smaller changes. Accepted for publication in ApJ. (See paper for complete version of the Abstract.

    Competing orders II: the doped quantum dimer model

    Get PDF
    We study the phases of doped spin S=1/2 quantum antiferromagnets on the square lattice, as they evolve from paramagnetic Mott insulators with valence bond solid (VBS) order at zero doping, to superconductors at moderate doping. The interplay between density wave/VBS order and superconductivity is efficiently described by the quantum dimer model, which acts as an effective theory for the total spin S=0 sector. We extend the dimer model to include fermionic S=1/2 excitations, and show that its mean-field, static gauge field saddle points have projective symmetries (PSGs) similar to those of `slave' particle U(1) and SU(2) gauge theories. We account for the non-perturbative effects of gauge fluctuations by a duality mapping of the S=0 dimer model. The dual theory of vortices has a PSG identical to that found in a previous paper (L. Balents et al., cond-mat/0408329) by a duality analysis of bosons on the square lattice. The previous theory therefore also describes fluctuations across superconducting, supersolid and Mott insulating phases of the present electronic model. Finally, with the aim of describing neutron scattering experiments, we present a phenomenological model for collective S=1 excitations and their coupling to superflow and density wave fluctuations.Comment: 22 pages, 10 figures; part I is cond-mat/0408329; (v2) changed title and added clarification

    Consistent Batalin--Fradkin quantization of Infinitely Reducible First Class Constraints

    Full text link
    We reconsider the problem of BRST quantization of a mechanics with infinitely reducible first class constraints. Following an earlier recipe [Phys. Lett. B 381, 105, (1996)], the original phase space is extended by purely auxiliary variables, the constraint set in the enlarged space being first stage of reducibility. The BRST charge involving only a finite number of ghost variables is explicitly constructed.Comment: 5 pages, LaTex. Minor corrections including the title. The version to appear in Phys. Rev.

    Chronic Sleep Disturbance Impairs Glucose Homeostasis in Rats

    Get PDF
    Epidemiological studies have shown an association between short or disrupted sleep and an increased risk for metabolic disorders. To assess a possible causal relationship, we examined the effects of experimental sleep disturbance on glucose regulation in Wistar rats under controlled laboratory conditions. Three groups of animals were used: a sleep restriction group (RS), a group subjected to moderate sleep disturbance without restriction of sleep time (DS), and a home cage control group. To establish changes in glucose regulation, animals were subjected to intravenous glucose tolerance tests (IVGTTs) before and after 1 or 8 days of sleep restriction or disturbance. Data show that both RS and DS reduce body weight without affecting food intake and also lead to hyperglycemia and decreased insulin levels during an IVGTT. Acute sleep disturbance also caused hyperglycemia during an IVGTT, yet, without affecting the insulin response. In conclusion, both moderate and severe disturbances of sleep markedly affect glucose homeostasis and body weight control

    Experimental realization of a quantum game on a one-way quantum computer

    Full text link
    We report the first demonstration of a quantum game on an all-optical one-way quantum computer. Following a recent theoretical proposal we implement a quantum version of Prisoner's Dilemma, where the quantum circuit is realized by a 4-qubit box-cluster configuration and the player's local strategies by measurements performed on the physical qubits of the cluster. This demonstration underlines the strength and versatility of the one-way model and we expect that this will trigger further interest in designing quantum protocols and algorithms to be tested in state-of-the-art cluster resources.Comment: 13 pages, 4 figure
    corecore