108 research outputs found

    Using Insights from Cognitive Neuroscience to Investigate the Effects of Event-Driven Process Chains on Process Model Comprehension

    Get PDF
    Business process models have been adopted by enterprises for more than a decade. Especially for domain experts, the comprehension of process models constitutes a challenging task that needs to be mastered when creating or reading these models. This paper presents the results we obtained from an eye tracking experiment on process model comprehension. In detail, individuals with either no or advanced expertise in process modeling were confronted with models expressed in terms of Event-driven Process Chains (EPCs), reflecting different levels of difficulty. The first results of this experiment confirm recent findings from one of our previous experiments on the reading and comprehension of process models. On one hand, independent from their level of exper-tise, all individuals face similar patterns, when being confronted with process models exceeding a certain level of difficulty. On the other, it appears that process models expressed in terms of EPCs are perceived differently compared to process models specified in the Business Process Model and Notation (BPMN). In the end, their generalization needs to be confirmed by additional empirical experiments. The presented expe-riment continues a series of experiments that aim to unravel the factors fostering the comprehension of business process models by using methods and theories stemming from the field of cognitive neuroscience and psychology

    Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis

    Get PDF
    Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3–12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning

    On Intertrial Interval Discrimination in Classical Conditioning

    No full text

    Random controls: A rejoinder

    No full text

    Erratum to: Toward a complete analysis of GSR data.

    No full text

    GSR amplitude instead of GSR magnitude: Caveat emptor!

    No full text
    corecore