842 research outputs found

    Continuous Loading of a Conservative Trap from an Atomic Beam

    Full text link
    We demonstrate the fast accumulation of Cr atoms in a conservative potential from a magnetically guided atomic beam. Without laser cooling on a cycling transition, a single dissipative step realized by optical pumping allows to load atoms at a rate of 2*10^7 1/s in the trap. Within less than 100 ms we reach the collisionally dense regime, from which we directly produce a Bose-Einstein condensate with subsequent evaporative cooling. This constitutes a new approach to degeneracy where, provided a slow beam of particles can be produced by some means, Bose-Einstein condensation can be reached for species without a cycling transition.Comment: 4 pages, 4 figure

    Depolarisation cooling of an atomic cloud

    Full text link
    We propose a cooling scheme based on depolarisation of a polarised cloud of trapped atoms. Similar to adiabatic demagnetisation, we suggest to use the coupling between the internal spin reservoir of the cloud and the external kinetic reservoir via dipolar relaxation to reduce the temperature of the cloud. By optical pumping one can cool the spin reservoir and force the cooling process. In case of a trapped gas of dipolar chromium atoms, we show that this cooling technique can be performed continuously and used to approach the critical phase space density for BECComment: 8 pages, 5 figure

    Phase Space Tomography of Matter-Wave Diffraction in the Talbot Regime

    Full text link
    We report on the theoretical investigation of Wigner distribution function (WDF) reconstruction of the motional quantum state of large molecules in de Broglie interference. De Broglie interference of fullerenes and as the like already proves the wavelike behaviour of these heavy particles, while we aim to extract more quantitative information about the superposition quantum state in motion. We simulate the reconstruction of the WDF numerically based on an analytic probability distribution and investigate its properties by variation of parameters, which are relevant for the experiment. Even though the WDF described in the near-field experiment cannot be reconstructed completely, we observe negativity even in the partially reconstructed WDF. We further consider incoherent factors to simulate the experimental situation such as a finite number of slits, collimation, and particle-slit van der Waals interaction. From this we find experimental conditions to reconstruct the WDF from Talbot interference fringes in molecule Talbot-Lau interferometry.Comment: 16 pages, 9 figures, accepted at New Journal of Physic

    Rydberg trimers and excited dimers bound by internal quantum reflection

    Full text link
    Quantum reflection is a pure wave phenomena that predicts reflection of a particle at a changing potential for cases where complete transmission occurs classically. For a chemical bond, we find that this effect can lead to non-classical vibrational turning points and bound states at extremely large interatomic distances. Only recently has the existence of such ultralong-range Rydberg molecules been demonstrated experimentally. Here, we identify a broad range of molecular lines, most of which are shown to originate from two different novel sources: a single-photon associated triatomic molecule formed by a Rydberg atom and two ground state atoms and a series of excited dimer states that are bound by a so far unexplored mechanism based on internal quantum reflection at a steep potential drop. The properties of the Rydberg molecules identified in this work qualify them as prototypes for a new type of chemistry at ultracold temperatures.Comment: 6 pages, 3 figures, 1 tabl

    Continuous loading of a magnetic trap

    Get PDF
    We have realized a scheme for continuous loading of a magnetic trap (MT). ^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap (MOT). Optical pumping to a metastable state decouples atoms from the cooling light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking metastable atoms are trapped in the magnetic quadrupole field provided by the MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into the MT. After loading we can perform optical repumping to realize a MT of ground state chromium atoms.Comment: 4 pages, 4 figures, version 2, modified references, included additional detailed information, minor changes in figure 3 and in tex
    • …
    corecore