190 research outputs found
Influence of nearly resonant light on the scattering length in low-temperature atomic gases
We develop the idea of manipulating the scattering length in
low-temperature atomic gases by using nearly resonant light. As found, if the
incident light is close to resonance with one of the bound levels of
electronically excited molecule, then virtual radiative transitions of a pair
of interacting atoms to this level can significantly change the value and even
reverse the sign of . The decay of the gas due to photon recoil, resulting
from the scattering of light by single atoms, and due to photoassociation can
be minimized by selecting the frequency detuning and the Rabi frequency. Our
calculations show the feasibility of optical manipulations of trapped Bose
condensates through a light-induced change in the mean field interaction
between atoms, which is illustrated for Li.Comment: 12 pages, 1 Postscript figur
Resonant Coupling in the Heteronuclear Alkali Dimers for Direct Photoassociative Formation of X(0,0) Ultracold Molecules
Promising pathways for photoassociative formation of ultracold heteronuclear
alkali metal dimers in their lowest rovibronic levels (denoted X(0,0)) are
examined using high quality ab initio calculations of potential energy curves
currently available. A promising pathway for KRb, involving the resonant
coupling of the and states just below the lowest excited
asymptote (K()+Rb()), is found to occur also for RbCs and less
promisingly for KCs as well. The resonant coupling of the and
states, also just below the lowest excited asymptote, is found to be
promising for LiNa, LiK, LiRb, and less promising for LiCs and KCs. Direct
photoassociation to the state near dissociation appears promising in
the final dimers, NaK, NaRb, and NaCs, although detuning more than 100
cm below the lowest excited asymptote may be required.Comment: 20 pages, 12 figures, Submitted to Journal of Physical Chemistry
Theoretical study of the absorption spectra of the lithium dimer
For the lithium dimer we calculate cross sections for absorption of radiation
from the vibrational-rotational levels of the ground X [singlet Sigma g +]
electronic state to the vibrational levels and continua of the excited A
[singlet Sigma u +] and B [singlet Pi u] electronic states. Theoretical and
experimental data are used to characterize the molecular properties taking
advantage of knowledge recently obtained from photoassociation spectroscopy and
ultra-cold atom collision studies. The quantum-mechanical calculations are
carried out for temperatures in the range from 1000 to 2000 K and are compared
with previous calculations and measurements.Comment: 20 pages, revtex, epsf, 6 fig
Limit on suppression of ionization in metastable neon traps due to long-range anisotropy
This paper investigates the possibility of suppressing the ionization rate in
a magnetostatic trap of metastable neon atoms by spin-polarizing the atoms.
Suppression of the ionization is critical for the possibility of reaching
Bose-Einstein condensation with such atoms. We estimate the relevant long-range
interactions for the system, consisting of electric quadrupole-quadrupole and
dipole-induced dipole terms, and develop short-range potentials based on the
Na_2 singlet and triplet potentials. The auto-ionization widths of the system
are also calculated. With these ingredients we calculate the ionization rate
for spin-polarized and for spin-isotropic samples, caused by anisotropy of the
long-range interactions. We find that spin-polarization may allow for four
orders of magnitude suppression of the ionization rate for Ne. The results
depend sensitively on a precise knowledge of the interaction potentials,
however, pointing out the need for experimental input. The same model gives a
suppression ratio close to unity for metastable xenon in accordance with
experimental results, due to a much increased anisotropy in this case.Comment: 15 pages including figures, LaTex/RevTex, uses epsfig.st
Useful immunohistochemical indicators in canine mast cell tumours
Morphological and immunohistochemical analysis of 45 canine mast cell tumours was performed to determine whether the proteins examined are useful for a more precise description of tumour morphology and a more reliable determination of the prognosis in patients. Tissue sections were stained according to the standard haematoxylin and eosin (HE) technique and with toluidine blue to demonstrate cytoplasmic granules. Immunohistochemical studies were performed, using the cell markers CD117 (c-kit), p16 and von Willebrand factor (FVIII). In CD117 three different staining patterns were observed: (1) membranous reaction, (2) intense staining of cytoplasm, and (3) a diffuse, delicate cytoplasmic reaction. Von Willebrand antibody was evaluated on the basis of the number of blood vessels stained. p16 expression was evaluated by scoring positive nuclear reaction. Positive expression was demonstrated for all examined antigens, but their level of expression differed depending on the grades of tumour malignancy. Statistical analysis of the results documented a pronounced positive correlation between the markers studied and the grade of tumour malignancy (P < 0.001). It was shown that each of the cell markers examined represents a useful prognostic indicator for patients with mast cell tumours. The calculated correlation coefficients demonstrate a strong association between the expressions of CD117, FVIII and p16, and the histological malignancy of a tumour
Calculation of the interspecies s-wave scattering length in an ultracold Na-Rb vapor
We report the calculation of the interspecies scattering length for the
sodium-rubidium (Na-Rb) system. We present improved hybrid potentials for the
singlet and triplet ground states of the NaRb
molecule, and calculate the singlet and triplet scattering lengths and
for the isotopomers NaRb and NaRb. Using
these values, we assess the prospects for producing a stable two-species
Bose-Einstein condensate in the Na-Rb system.Comment: v2: report correct units in Table captions, fix error in conclusions
for NaRb TBEC. Otherwise, more concise presentation, typos
fixed. 6 pages, 1 figur
Theoretical study of the absorption spectra of the sodium dimer
Absorption of radiation from the sodium dimer molecular states correlating to
Na(3s)-Na(3s) is investigated theoretically. Vibrational bound and continuum
transitions from the singlet X Sigma-g+ state to the first excited singlet A
Sigma-u+ and singlet B Pi-u states and from the triplet a Sigma-u+ state to the
first excited triplet b Sigma-g+ and triplet c Pi-g states are studied
quantum-mechanically. Theoretical and experimental data are used to
characterize the molecular properties taking advantage of knowledge recently
obtained from ab initio calculations, spectroscopy, and ultra-cold atom
collision studies. The quantum-mechanical calculations are carried out for
temperatures in the range from 500 to 3000 K and are compared with previous
calculations and measurements where available.Comment: 19 pages, 8 figures, revtex, eps
Luttinger model approach to interacting one-dimensional fermions in a harmonic trap
A model of interacting one--dimensional fermions confined to a harmonic trap
is proposed. The model is treated analytically to all orders of the coupling
constant by a method analogous to that used for the Luttinger model. As a first
application, the particle density is evaluated and the behavior of Friedel
oscillations under the influence of interactions is studied. It is found that
attractive interactions tend to suppress the Friedel oscillations while strong
repulsive interactions enhance the Friedel oscillations significantly. The
momentum distribution function and the relation of the model interaction to
realistic pair interactions are also discussed.Comment: 12 pages latex, 1 eps-figure in 1 tar file, extended Appendix, added
and corrected references, new eq. (53), corrected typos, accepted for PR
- âŠ