5,861 research outputs found

    The GZK Bound and Strong Neutrino-Nucleon Interactions above 10^19eV: a Progress Report

    Get PDF
    Cosmic ray events above 10^19 eV have posed a fundamental problem for more than thirty years. Recent measurements indicate that these events do not show the features predicted by the GZK bound. The events may, in addition, display angular correlations with point sources. If these observations are confirmed for point sources further than 50 - 100 Mpc, then strong interactions for the neutrino are indicated. Recent work on extra spatial dimensions provides a context for massive spin-2 exchanges capable of generating cross sections in the 1 - 100 mb range, as indicated by data. Applications of extra-dimension physics are controversial, and we comment on several contentious issues.Comment: 4 pages, 1 figure; talk by JPR at 7th Conference on the Intersections of Particle and Nuclear Physics, Quebec City, May, 200

    Extra dimensions and Strong Neutrino-Nucleon interactions above 101910^{19} eV : Breaking the GZK Barrier

    Get PDF
    Cosmic ray events above 102010^{20} eV are on the verge of confronting fundamental particle physics. The neutrino is the only candidate primary among established particles capable of crossing 100 Mpc intergalactic distances unimpeded. The magnitude of νN\nu N cross sections indicated by events, plus consistency with the Standard Model at low-energy, point to new physics of massive spin-2 exchange. In models based on extra dimensions, we find that the νN\nu N cross section rises to typical hadronic values of between 1 and 100 mb at energies above 102010^{20} eV. Our calculations take into account constraints of unitarity. We conclude that air-showers observed with energies above 101910^{19} eV are consistent with neutrino primaries and extra-dimension models. An {\it upper bound} of 1-10 TeV on the mass scale at which graviton exchange becomes strong in current Kaluza-Klein models follows.Comment: 14 pages, 2 figures, minor change

    A ROSAT Survey of Contact Binary Stars

    Full text link
    Contact binary stars are common variable stars which are all believed to emit relatively large fluxes of x-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with x-ray data from the ROSAT All-Sky Survey (RASS) to estimate the x-ray volume emissivity of contact binary stars in the galaxy. We obtained x-ray fluxes for 140 contact binaries from the RASS, as well as 2 additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of x-rays from all contact binary systems, with typical luminosities of approximately 1.0 x 10^30 erg s^-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough x-ray emission to account for a significant portion of the galactic x-ray background.Comment: 19 pages, 5 figures, accepted by A

    Sampling Distributions of Random Electromagnetic Fields in Mesoscopic or Dynamical Systems

    Full text link
    We derive the sampling probability density function (pdf) of an ideal localized random electromagnetic field, its amplitude and intensity in an electromagnetic environment that is quasi-statically time-varying statistically homogeneous or static statistically inhomogeneous. The results allow for the estimation of field statistics and confidence intervals when a single spatial or temporal stochastic process produces randomization of the field. Results for both coherent and incoherent detection techniques are derived, for Cartesian, planar and full-vectorial fields. We show that the functional form of the sampling pdf depends on whether the random variable is dimensioned (e.g., the sampled electric field proper) or is expressed in dimensionless standardized or normalized form (e.g., the sampled electric field divided by its sampled standard deviation). For dimensioned quantities, the electric field, its amplitude and intensity exhibit different types of Bessel KK sampling pdfs, which differ significantly from the asymptotic Gauss normal and χ2p(2)\chi^{(2)}_{2p} ensemble pdfs when ν\nu is relatively small. By contrast, for the corresponding standardized quantities, Student tt, Fisher-Snedecor FF and root-FF sampling pdfs are obtained that exhibit heavier tails than comparable Bessel KK pdfs. Statistical uncertainties obtained from classical small-sample theory for dimensionless quantities are shown to be overestimated compared to dimensioned quantities. Differences in the sampling pdfs arising from de-normalization versus de-standardization are obtained.Comment: 12 pages, 15 figures, accepted for publication in Phys. Rev. E, minor typos correcte

    Life on ice, Antarctica and Mars

    Get PDF
    The study of the origin of life and the prospects for human exploration of Mars are two themes developed in a new 57-minute film, Life on Ice, Antarctica, and Mars, produced by the InnerSpace Foundation and WHRO Television for broadcast by the Public Broadcasting System (PBS). A brief explanation of the film and how it relates to the future human exploration of space is presented

    Fluids and their Effect on Measurements on Lunar Soil Particle size Distribution

    Get PDF
    From the late 1960s until now, lunar soil particle size distributions have typically been determined by sieving sometimes dry, and at other times with fluids such as water or Freon. Laser diffraction instruments allow rapid assessment of particle size distribution, and eventually may replace sieve measurements. However, when measuring lunar soils with laser diffraction instruments, care must be taken in choosing a carrier fluid that is compatible with lunar material. Distilled water is the fluid of choice for laser diffraction measurements of substances when there is no concern about adverse effects of water on the material being measured. When we began our analyses of lunar soils using laser diffraction, our first measurements were made with distilled water. Although the medians that we measured were comparable to earlier sieve data, the means tended to be significantly larger than expected. The effect of water vapor on lunar soil has been studied extensively. The particles interact strongly with water vapor, and subsequent adsorptions of nitrogen showed that the specific surface area increased as much as threefold after exposure to moisture. It was observed that significant porosity had been generated by this exposure to water vapor. The possibility of other physical changes in the surfaces of the grains was not studied

    Lunar resources: Oxygen from rocks and soil

    Get PDF
    The first set of hydrogen reduction experiments to use actual lunar material was recently completed. The sample, 70035, is a coarse-grained vesicular basalt containing 18.46 wt. percent FeO and 12.97 wt. percent TiO2. The mineralogy includes pyroxene, ilmenite, plagioclase, and minor olivine. The sample was crushed to a grain size of less than 500 microns. The crushed basalt was reduced with hydrogen in seven tests at temperatures of 900-1050 C and pressures of 1-10 atm for 30-60 minutes. A capacitance probe, measuring the dew point of the gas stream, was used to follow reaction progress. Experiments were also conducted using a terrestrial basalt similar to some lunar mare samples. Minnesota Lunar Simulant (MLS-1) contains 13.29 wt. percent FeO, 2.96 wt. percent Fe2O3, and 6.56 wt. percent TiO2. The major minerals include plagioclase, pyroxene, olivine, ilmenite, and magnetite. The rock was ground and seived, and experiments were run on the less than 74- and 500-1168-micron fractions. Experiments were also conducted on less than 74-micron powders of olivine, pyroxene, synthetic ilmenite, and TiO2. The terrestrial rock and mineral samples were reduced with flowing hydrogen at 1100 C in a microbalance furnace, with reaction progress monitored by weight loss. Experiments were run at atmospheric pressure for durations of 3-4 hr. Solid samples from both sets of experiments were analyzed by Mossbauer spectroscopy, petrographic microscopy, scanning electron microscopy, tunneling electron microscopy, and x-ray diffraction. Apollo 17 soil 78221 was examined for evidence of natural reduction in the lunar environment. This sample was chosen based on its high maturity level (I sub s/FeO = 93.0). The FeO content is 11.68 wt. percent and the TiO2 content is 3.84 wt. percent. A polished thin section of the 90-150 micron size fraction was analyzed by petrographic microscopy and scanning electron microscopy

    Signatures of Pseudoscalar Photon Mixing in CMB Radiation

    Full text link
    We model the effect of photon and ultra-light pseudoscalar mixing on the propagation of electromagnetic radiation through the extragalactic medium. The medium is modelled as a large number of magnetic domains, uncorrelated with one another. We obtain an analytic expression for the different Stokes parameters in the limit of small mixing angle. The different Stokes parameters are found to increase linearly with the number of domains. We also verify this result by direct numerical simulations. We use this formalism to estimate the effect of pseudoscalar-photon mixing on the Cosmic Microwave Background (CMB) polarization. We impose limits on the model parameters by the CMB observations. We find that the currently allowed parameter range admits a CMB circular polarization up to order 10710^{-7}.Comment: 17 pages, 5 figure
    corecore